SYLLABUS

1. Data about the program of study

1.1	Institution	Technical University of Cluj-Napoca
1.2	Faculty	Electronics, Telecommunications and Information Technology
1.3	Department	Mathematics
1.4	Field of study	Electronics, TelecommunicatioElectronic Engineering, Telecommunications and Information Technologies
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Electronics, Telecommunications/Engineer
1.7	Form of education	Full time
1.8	Subject code	2.00

2. Data about the subject

2.1	Subject name					Linear Algebra					
2.2	Subject area					Mathematics					
2.3	Course responsible/lecturer					Prof.dr. Radu Peter- radu.peter@math.utcluj.ro					
2.4	Teachers in charge of applications					Prof.dr. Radu Peter- radu.peter@math.utcluj.ro Lect. dr. Liana Timbos - Liana.Timbos@math.utcluj.ro>					
2.5	Year of study	I	2.6	Semester	1	2.7	Assessment	Written /online exam	2.8	Subject category	DF/OB

3. Estimated total time

Sem.	Subject name	Lecture		ica		Lecture	Applications			Individual study	TOTAL	Credit
		[hours / week.]				[hours / semester]						
			S	L	P		S	L	P			
1	Linear Algebra	2	2	-	-	28	28	-	-	48	104	4

3.1	Number of hours per week	4	3.2	of which, course	2	3.3	applications
3.4	Total hours in the teaching plan	104	3.5 of which, course	28	3.6	applications	28
Individual study			Hours				
Manual, lecture material and notes, bibliography		20					
Supplementary study in the library, online and in the field		4					
Preparation for seminars/laboratory works, homework, reports, portfolios, essays		21					
Tutoring		0					
Exams and tests		3					
Other activities							

3.7	Total hours of individual study	48
3.8	Total hours per semester	104
3.9	Number of credit points	4

4. Pre-requisites (where appropriate)

4.1	Curriculum	Basic knowledge of Linear Algebra and Analytic Geometry
4.2	Competence	Competences in elementary Linear Algebra and Analytic Geometry: matrices, determinants, linear systems, vectors and lines in plane

5. Requirements (where appropriate)

5.1	For the course	Blackboard, video projector
5.2	For the applications	Blackboard, video projector

6. Specific competences

	C1.1. Professional communication using scientific concepts, theory and methods used in system engineering. C1.2. Presentation and motivation of solution to problems from system engineering using techniques, concepts
and principles from mathematics, physics, etc.	

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	A presentation of the concepts, notions, methods and fundamental techniques used in linear algebra and analytic geometry.
7.2	Specific objectives	Use of the matrix calculus (in the general context of linear algebra) in order to solve problems in engineering. Use of the vectorial calculus (in the general context of analytic geometry) in modelling and solving practical problems concerning spatial forms.

8. Contents

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{8.1. Lecture (syllabus)} \& Teaching methods \& \multirow[t]{17}{*}{\begin{tabular}{l}
Notes \\
mira 2014, \\
a, 2012
\end{tabular}} \\
\hline 1 \& Vectors in plane and space. \& \multirow[t]{15}{*}{\begin{tabular}{l}
Explanation \\
Demonstration \\
Collaboration \\
Interactive activities
\end{tabular}} \& \\
\hline 2 \& Lines and planes. \& \& \\
\hline 3 \& Vectror spaces: defntion, examles, subsaces, sums of subspaces. \& \& \\
\hline 4 \& Basis and dimensions. Linar indpendence. Change of basis. \& \& \\
\hline 5 \& Inner product spaces (I): definition, examples, computations, orthonormal basis, Schwarz inequalty, orthogonal complement. \& \& \\
\hline 6 \& Inner product spaces (II): Gram-Schmidt ortogonalization process, Gram deteminants. Linear manifolds, distances. \& \& \\
\hline 7 \& Linear maps (I): definition, kernel, image, injective and surjective maps. \& \& \\
\hline 8 \& Linear maps (II): the matrix of a linear map. \& \& \\
\hline 9 \& Eigenvectors and eigenvalues of operators (and associated matrix). Characteristic polynomial. Cayley-Hamilton thoerem. Diagonal form. Diagonaziabel operators. \& \& \\
\hline 10 \& The Jordan canonical form for operators (and associated matrix). Jordan basis, the Jordan matrix. \& \& \\
\hline 10 \& Functions of a matrix. The n-th power of a matrix. Elementary functions of a matrix. \& \& \\
\hline 11 \& The adjoint operator. Definition, properties, examples. \& \& \\
\hline 12 \& Special operators, Properties of eigenvalues and eigenvectors. \& \& \\
\hline 13 \& Bilinear forms, quadratic forms. The associated matrix. \& \& \\
\hline 14 \& Conics and quadrics. Reduction to a canonical form. Geometric properties. \& \& \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{|lll}
\hline \begin{tabular}{rl}
Bibliography \\
1. \& Ioan Radu Peter, Szilard Laszlo, Adrian Viorel , Elements of \\
\& https://algappl.utcluj.ro/ \\
2. \& D. Cimpean, D. Inoan, I. Rasa, An invitation to Linear Algebra and Analy \\
3. \& V. Pop, I. Rasa, Linear Algebra with Applications to Markov Chains, Ed \\
\hline 8.2. Applications (Seminars)
\end{tabular} \\
\hline
\end{tabular}}} \& Algebra, Mediamira 2014, metry, Ed. Mediamira, 2012 ira, 2005 \& \\
\hline \& \& Teaching methods \& Notes \\
\hline 1 \& Linear systems, matrices, determinants. \& \multirow[t]{3}{*}{\begin{tabular}{l}
Explanation \\
Demonstration
\end{tabular}} \& \multirow[t]{7}{*}{} \\
\hline 2 \& Vectorial geometry. Determinants. Exercises. \& \& \\
\hline 3 \& Problems in analytical geometry: lines and planes. Applications. \& \& \\
\hline 4 \& Linear spaces, basis, dimension, direct sums. \& \multirow[b]{4}{*}{Collaboration

Interactive
activities} \&

\hline 5 \& Linear indpenedence, basis, dimensions. \& \&

\hline 6 \& Inner product spaces (I): definition, examples, computations, orthonormal basis, Schwarz inequalty, orthogonal complement. \& \&

\hline 7 \& Inner product spaces (II): Gram-Schmidt ortogonalization process, Gram \& \&

\hline
\end{tabular}

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field
Collaboration with engineers in order to identify and solve problems raised by the market.
10. Evaluation

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the final grade
Course		Abilities of understanding and using creatively the concepts and proofs		Written examination	20%	
Applications	Abilities of solving problems and applying algorithms		Written examination	80%		
10.4. Minimum standard of performance						
Ability to present coherently a theoretical subject and to solve problems with practical content.						

Date of filling in	Responsible	Ttilre, Name, Surname	Signature
	Course	Prof. dr. Ioan Radu Peter	
28.04 .2023	Applications	Prof. Dr. Ioan Radu Peter	
		Lect. Liana Timbos	

Date of approval in the department council
Head of Mathematics Departament Professor Dr. Dorian POPA

Dean
Professor Dr. Eng. Ovidiu POP

Date of approval in the Council of Faculty of Electronics, Telecommunications and Information Technology 12.07.2023

