

SYLLABUS

1. Data about the program of study

1.1 Institution	Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Electronics, Telecommunications and Information
1.2 Faculty	Technology
1.3 Department	Mathematics
1.4 Field of study	Electronic Engineering, Telecommunications and Information
1.4 Field of Study	Technologies
1.5 Cycle of study	Bachelor of Science
1.6 Program of study / Qualification	Applied Electronics, Telecommunications Technologies and
1.0 Program of study / Qualification	Systems / Engineer
1.7 Form of education	Full time
1.8 Subject code	8.00

2. Data about the subject

2.1 Subject name		Specia	Special Mathematics					
Theore			etic	tical area				
2.2 Subject area N		Meth	Methodological area					
Analyt			tic a	rea				
2.3 Course responsible			Pro	Prof. Dr. Gavrea Ioan – ioan.gavrea@math.utcluj.ro				
			Prof. Dr. Popa Dorian – popa.dorian@math.utcluj.ro					
			Conf. Dr. Holhoş Adrian – <u>adrian.holhos@math.utcluj.ro</u>					
2.47			Со	Conf. Dr. Holhoș Adrian – <u>adrian.holhos@math.utcluj.ro</u>				
laboratory / project			Lect. Dr. Alina Baias – <u>baias.alina@math.utcluj.ro</u>					
			As	Asist. Drd. Orzan Alexandru – <u>alexandru.orzan@math.utcluj.ro</u>				<u>ij.ro</u>
2.5 Year of study	1	2.6 Semest	ster 2 2.7 Assessment E 2.8 Subject category DF					

3. Estimated total time

3.1 Number of hours per week	0	f which: 2 course		2 seminar / laboratory		
3.4 To Total hours in the curriculum	0.	f which: 28 course		28 seminar / laboratory		
Distribution of time						
Manual, lecture material and notes, b	oibliograp	ohy			24	
Supplementary study in the library, online specialized platforms and in the field					6	
Preparation for seminars / laboratories, homework, reports, portfolios and essays					24	
Tutoring						
Exams and tests					2	
Other activities:						
3.7 Total hours of individual study 69						

3.8 Total hours per semester 125

3.9 Number of credit points 5

4. Pre-requisites (where appropriate)

4.1curriculum	Mathematical Analysis, Linear Algebra

4.2 competence Operating with basic Mathematical, Engineering and Computer Science concepts

5. Requirements (where appropriate)

5.1. for the course	Basic knowledge of Integral Calculus for one variable and complex numbers
5.2. for the seminars/laboratories / projects	Basic knowledge of Integral Calculus for one variable and complex numbers

6. Specific competences

7. Discipline objectives (as results from the key competences gained)

7.1 General objective	A presentation of the concepts, notions, methods and fundamental techniques used in integral calculus and complex functions
7.2 Specific objectives	Use of the integral calculus and the complex functions in order to solve problems in engineering

8. Contents

Course 1 - Improper integrals.	Teaching methods	Notes			
Course 2 - Integrals with parameters. The Gamma and Beta functions.					
Course 3 - Line integrals of the first kind.					
Course 4 - Line integrals of the second kind.					
Course 5 - Differential forms.					
Course 6 - Measurable sets in R ⁿ . The Riemann integral in R ⁿ .					
Course 7 - Evaluation of multiple integral by iteration.	Explanation				
Course 8 - Change of variables in multiple integrals.	Demonstration				
Course 9 - Surface integrals of the first and second kind.	Collaboration				
Course 10 - Integral formulas: Green, Stokes, Gauss-Ostrogradski.	Interactive activities				
Course 11 - Holomorphic functions. Cauchy-Riemann equations.					
Course 12 - Complex integral. Cauchy Theorem.					
Course 13 - Taylor series. Laurent series					
Course 14- Residue Theorem					
Bibliography:					
1. T. Apostol, Mathematical Analysis, Addison-Wesley Publishing Company, 198	31.				
2. A. Ciupa, A. Holhoș, Calcul integral-culegere de probleme, Casa cărții de știință, Cluj-Napoca, 2011.					
3. P. Flondor, O. Stanasila, Lecții de analiza matematica, Editura All, Bucuresti, 1993.					
4. I. Gavrea, Calcul integral, Editura Mediamira, Cluj-Napoca, 2008.					
5. I. Gavrea, Matematici speciale, Editura Mediamira, Cluj-Napoca, 2006.					
6. S. Lang, Undergraduate Analysis, Springer, 1997.					

7. D. Popa, Calcul integral, Mediamira, Cluj-Napoca, 2005.

	, Bri opa, calcar megral, medianina, ciaj napola, 2005					
8.2	2 Seminar/laboratory / project	Teaching methods	Notes			
ſ	1 - Improper integrals.					
	2 - Integrals with parameters. The Gamma and Beta functions.					
	3 - Line integrals of the first kind.	Explanation				
	4 - Line integrals of the second kind.	Demonstration				
	5 - Differential forms.	Collaboration				
6 - Measurable sets in R ⁿ . The Riemann integral in R ⁿ .		Interactive activities				
	7 - Evaluation of multiple integral by iteration.					
	8 - Change of variables in multiple integrals.					

9 - Surface integrals of the first and second kind.	
10 - Integral formulas: Green, Stokes, Gauss-Ostrogradski.	
11 - Holomorphic functions. Cauchy-Riemann equations.	
12 - Complex integral. Cauchy Theorem.	
13 - Taylor series. Laurent series	
14- Residue Theorem	
Bibliography	

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The discipline content and the acquired skills are in agreement with the expectations of the professional organizations and the employers in the field, where the students carry out the internship stages and/or occupy a job (in the field of), and the expectations of the national organization for quality assurance (ARACIS).

10. Evaluation

Activity type	10 1 Assessment criteria	10.2 Assessment	10.3 Weight in				
Activity type		methods	the final grade				
10.4 Course The level of acquired theoretical knowledge V		Written paper	80%				
	and practical skills	online/face to face	0070				
10.5 Seminar	The level of acquired knowledge and abilities	Partial tests	20%				
10.6 Minimum standard of performance							
✓ Five grade							

Date of filling in:	Responsible	Title Surname NAME	Signature
20.06.2023	Course	Prof. Dr. Ioan GAVREA	
		Prof. Dr. Dorian POPA	
		Conf. Dr. Adrian HOLHOŞ	
	Applications	Conf. Dr. Adrian HOLHOŞ	
		Lect. Dr. Alina BAIAS	
		Asist. Drd. Alexandru ORZAN	

Date of approval in the Department of Mathematics

Head of Department of Mathematics Prof. dr. Dorian Popa

Date of approval in the Council of Faculty of Electronics, Telecommunications and Information Technology

Dean Prof. dr. eng. Ovidiu POP

12.07.2023

Universitatea Tehnică din Cluj-Napoca • Facultatea de Electronică, Telecomunicații și Tehnologia Informației Str. George Barițiu nr. 26-28, 400027, Cluj-Napoca, Tel: 0264-401224, Tel/Fax: 0264-591689, http://www.etti.utcluj.ro