

SYLLABUS

1. Data about the program of study

1.1 Institution	Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Electronics, Telecommunications and information
1.2 Faculty	Technology
1.3 Department	Bases of Electronics
1.4 Field of Study	Electronic Engineering, Telecommunications and Information
1.4 Field of Study	Technologies
1.5 Cycle of study	Bachelor of Science
1.6 Program of study / Qualification	Applied Electronics / Engineer
1.7 Form of education	Full time
1.8 Subject code	19.00

2. Data about the subject

2.1 Subject name	C	Digital Integrated Circuits						
Theore			tical area					
2.2 Subject area	Netho	dol	ogic	area				
	Analyt			tic area				
2.3 Course responsible/lecturer			Ass	sist. I	Prof Mihaela Cîrlugea, I	Ph.C) eng.,	
			Mihaela.Cirlugea@bel.utcluj.ro					
2.4 Teachers in charge of applications			Assist. Prof Mihaela Cîrlugea Ph.D eng,					
			Mihaela.Cirlugea@bel.utcluj.ro					
			Lecturer Paul Farago, Ph.D eng,					
			Paul.Farago@bel.utcluj.ro					
2.5 Year of study II	2.6 Se	meste	r	3	2.7 Assessment	Е	2.8 Subject category	DD

3. Estimated total time

3.1 Number of hours per week	4	Of which: 3.2	2	3.3 seminary / laboratory	2
3.1 Number of hours per week		course			
3.4 Total hours in the curriculum	56	Of which: 3.5	28	3.6 seminary / laboratory	28
3.4 Total hours in the curriculum		course			
Time distribution					hours
Studying the manual, lecture material and notes, references					20
Supplementary study in the library, online and in the field					-
Preparation for seminars/laboratory	works,	homework, reports	, portfo	lios, essays	18
Tutoring					3
Exams and tests				3	
Other activities					-
3.7 Total hours individual study	44				
	-				

3.8 Total hours per semester	100
3.9 Number of credit points	4

4. Pre-requisites (where appropriate)

4.1 Curriculum Digital Integrated Circuits						
	4.1 Curriculum	Digital Integrated Circuits				

4.2 Competencies	Bases of numeration, elements of logic and binary algebra. Electronic swithcing			
4.2 Competencies	devices			

5. Requirements (where appropriate)

5.1. for the course	Amphitheatre, Cluj-Napoca/Microsoft Teams
5.2. for the applications	Laboratory, Cluj-Napoca/Microsoft Teams

6. Specific competencies

	C1. Use of the fundamental elements related to devices, circuits, systems, instrumentation
	and electronic technology
	C1.1 Description of the functioning of electronic devices and circuits and of the
6	fundamental methods of measuring electrical parameters
Professional Competencies	C1.2 Analysis of electronic circuits and systems of low/ medium complexity, for the
en.	purpose of designing and measuring them
pet	C1.5 Design and implementation of electronic circuits of low/ medium complexity using
шo	CADCAM technologies and standards in the field
	C2.2 Explaining and interpreting the methods of signal acquisition and processing
ona	C2.3 Use of simulation media for signal analysis and processing
ssi	C2.4 Use of specific methods and tools for signal analysis
ofe	C2.5 Design of basic functional blocks for digital signal processing with hardware and
Pr	software implementation
	CT1 Methodical analysis of the problems encountered in the activity, identifying the
es	elements for which there are established solutions, thus ensuring the fulfillment of
nci	professional tasks.
ete	CT2 Defining the activities in each stage and distributing them to the subordinates with the
npe	complete explanation of the duties, according to the hierarchical levels. It ensures the
Cor	efficient exchange of information and inter-human communication.
al	CT3 Adaptation to new technologies, professional and personal development, through
ers	continuous training. Use of printed documentation sources, specialized software and
nsv	electronic resources in Romanian and in (at least) one language of international circulation
Transversal Competencies	

7. Discipline objectives (as results from the key competences gained)

7.1 General objectives	Developing the competences regarding the use, analysis and (re)desi of digital circuits	
7.2 Specific objectives	 Recognizing and understanding basic concepts specific to fundamental digital electronic circuits. Developing skills and abilities necessary for the use of fundamental digital electronic circuits. Developing skills and abilities for the analysis and (re)design of digital integrated circuits. 	

8. Contents

8.1 Course	Teaching methods	Observations
1. Introduction to the Binary Logic. Boolean	Presentation, heuristic	Use of .ppt presentation,
algebra, logic operation properties.	conversation,	projector, blackboard,

2. Binary codes, error detection, serial data	exemplification, problem	Microsoft Teams
transmission. Arithmetics in base 2. Basic logic	presentation, teaching	platform
operations	exercise, case study,	
3. Combinational Logic Circuits. Fundamental	formative evaluation	
logic gates. Analysis and synthesis of circuits		
containing gates. Logic functions minimization		
4. Combinational circuit applications: summer,		
comparer, coder, parity decoder, decoders,		
encoders		
5. Multiplexing and demultiplexing circuits.		
Multiplexer applications. Binary Trees. Logic		
functions implementation.		
6. RS, D, JK, T flip-flops. Internal structures.		
Analysis and synthesis of synchronous logic		
sequential circuits containing flip-flops.		
7. Synchronous sequential circuits with flip-		
flops. Binary counters, registers, ring counters,		
Johnson counters.		
8. Sequential logic circuits with flip-flops:		
signal generators and frequency dividers		
9. Synchronous sequential automata with flip-		
flops		
10. Synchronous integrated counters.		
Examples and applications		
11. Sequential Synchronous Automata with		
Flip-Flops		
12. Synchronous and asynchronous frequency		
dividers with counters. Cascading, capacity		
extensions.		
13. Sequential Synchronous Automata with		
integrated counters		
14. Asynchronous sequential circuits with flip-		
flops, binary asynchronous counters.		
References		

References

1. S Hintea, G Csipkes, D Csipkes, P Farago, M Cirlugea: Digital Integrated Circuits, Casa Cartii de Stiinta, Cluj-Napoca, 2017

2. M. Cîrlugea: DIC Course notes

3. Paul Farago, Botond Kirei, Gabor Csipkes, Sorin Hintea - DESCRIEREA IN VHDL A SISTEMELOR CU CIRCUITE INTEGRATE DIGITALE - Indrumator de Proiectare si Simulare. Editura U.T.PRESS, Cluj-Napoca, 2014

4. S. Hintea, Lelia Feştilă, Mihaela Cîrlugea – Circuite Integrate Digitale.UT Press, 2005

5. Gabor Csipkes, Doris Csipkes, Sorin Hintea, Mihaela Cîrlugea - "Circuite integrate digitale: culegere de probleme", editura UT Press 2011

6. J. Wakerly – Digital Design, Principle & Practices, Prentice Hall, 1999

7. S. Hintea, Lelia Feștilă, Mihaela Cîrlugea – Circuite Integrate Digitale. Culegere de probleme, Ed. Casa Cărții de Știință, 1999.

8. Dan Nicula. Electronica digitala. Carte de invatatura. Editura Universității TRANSILVANIA din Brașov, 2012

9. A.E.A. Almaini. Electronic Logic Systems, Ed. Prentice Hall, 1994.

 John F. Wakerly. Circuite Digitale, Editura Teora, Bucuresti, 2002. Rabaey J.M., Chandrakasan A., Nikolic B. Digital Integrated Circuits. A design perspective. Prentice Hall, 2003. 							
12. Weste, N.H.E., Eshraghian, K. Principles of Cl	MOS VLSI Design. A System pe	erspective. Addison-					
Wesley Publishing Company, 1993							
13. Pagina web a disciplinei de Circuite integrate	e digitale (prezentari curs, luc	rari de laborator,					
	probleme propuse, subiecte de examen), http://www.bel.utcluj.ro/ci/rom/cid/index.htm						
14. Marcovitz: Introduction to Logic Design, McGraw Hill, New York, 2005							
15. Morris Mano, Michael Ciletti: Digital Design,	Prentice Hall, SUA, 2007						
8.2 Seminary / laboratory / project	Teaching methods	Notes					
Laboratory	Didactic and experimental	Use of laboratory					
1. Labour protection. Logic combinational	proof, didactic exercise,	instrumentation,					
circuits. Implementation with logic modules	team work	experimental boards,					
2. Analogic decoders, multiplexers and		computers,					
demultiplexers digitally CMOS controlled.		white/magnetic board,					
Logic gates		Microsoft Teams					
3. Integrated flip-flops		platform					
4. Sequential synchronous automata with flip-							
flops							
5. Applications with integrated counters							
74193 and 74163							
6. Circuits with counters: frequency dividers,							
signal generators, synchronous sequential							
automata							
7. Asynchronous sequential circuits.							
Laboratory tests							
Seminary							
1. Fundamental logic functions, minimization,							
logic operations							
2. Analysis and synthesis of circuits containing							
gates and elementary logic gates simulation							
3. Multiplexers and their applications							
4. Decoders and demultiplexers							
5. Analysis and synthesis of circuits with flip-							
flops (D, T, RS, JK).							
6. Sequential synchronous automata with flip-							
flops and CLC.							
7. Analysis and synthesis of sequential							
automata and other circuits with counters							
References							
Gabor Csipkes, Doris Csipkes, Sorin Hintea, Mihaela Cîrlugea - "Circuite integrate digitale: culegere de							
probleme", editura UT Press 2011							
C. Rus, S.Hintea, Doris Csipkes. Circuite integrate digitale.Structuri interne. Indrumator de laborator.							
U.T. Press, Cluj-Napoca, 2006							
Paul Farago, Botond Kirei, Gabor Csipkes, Sorin Hintea – Descrierea in VHDL a sistemelor cu circuite							
integrate digitale - Indrumator de Proiectare si Simulare. Editura U.T.PRESS, Cluj-Napoca, 2014							

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The discipline content and the acquired skills are in agreement with the expectations of the professional organizations and the employers in the field of digital integrated circuits design, developers in hardware languages, where the students carry out the internship stages and/or occupy a job, and the expectations of the national organization for quality assurance (ARACIS).

10. Assesment

Activity type	10.1 Assesment criteria	10.2 Assesment methods	10.3 weight in the final grade		
10.4 Course	The level of acquired theoretical knowledge and practical skills	- Summative evaluation written exam (problems)	70%		
10.5 Laboratory/Seminary	The level of acquired abilities	 Continuous formative evaluation Laboratory test or project presentation 	30%		
10.6 Minimum standard of performance $L \ge 5$ and $E \ge 5$ and $0.7E + 0.3L \ge 5$					

Quality level:

Minimum knowledge:

- ✓ Knowing the basic binary mathematical operations
- ✓ Knowing the basic digital circuit components
- ✓ To understand signal and state diagrams specific to digital components
- \checkmark To recognize the main digital circuit applications

Minimum competences:

- ✓ To be able to solve K-maps
- ✓ To be able to implement simple digital circuits in given specifications
- ✓ Knowledge of basic procedures for circuit design

Quantitative level:

- ✓ Participation to all laboratory classes
- ✓ Minimal 5 grade for each, laboratory and exam

The final grade is calculated as: 0,7*Exam_grade+0,3*Laboratory_grade

Data of filling in: 1.07.2023	Responsible	Titlu Prenume NUME	Semnătura
	Course	Assist. prof M Cîrlugea, Ph.D eng.	
	Applications	Assist. prof M Cîrlugea, Ph.D eng.	
		Lecturer PhD. eng. Paul FARAGO	

Date of approval in the Bases of Electronics Department Council	Head Departament Prof.PhD. eng. Sorin HINTEA
_11.07.2023	

Date of approval in the Council of Faculty of Electronics, Telecommunications and Information Technology 12.07.2023 Dean Prof.PhD. eng. Ovidiu POP

Universitatea Tehnică din Cluj-Napoca • Facultatea de Electronică, Telecomunicații și Tehnologia Informației Str. George Barițiu nr. 26-28, 400027, Cluj-Napoca, Tel: 0264-401224, Tel/Fax: 0264-591689, http://www.etti.utcluj.ro