

SYLLABUS

1. Data about the program of study

1.1 Institution	Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Electronics, Telecommunications and information
1.2 Faculty	Technology
1.3 Department	Applied Electronics
1 4 Field of study	Electronic Engineering, Telecommunications and Information
1.4 Field of study	Technologies
1.5 Cycle of study	Bachelor of Science
1.6 Program of study / Qualification	Applied Electronics / Engineer
1.7 Form of education	Full time
1.8 Subject code	34.00

2. Data about the subject

- Bata about the sab	,								
2.1 Subject name		Funda	undamentals of Data Aquisition Systems						
	Theoretical area								
2.2 Subject area Metho			odological area						
Analyt				rea					
2.2 Course responsible			Prof. Mircea Alexandru Dăbâcan, PhD Eng.						
2.5 Course responsib	2.3 Course responsible Mircea.Dabacan@ael.utcluj.ro								
			As	soc.P	Prof.Liviu Viman, PhD Er	าg.	<u>Liviu.Viman@ael.utcluj.rc</u>	<u>)</u>	
2.4 Teacher in charge with seminar /			As	Assoc. Prof. Septimiu Pop, PhD Eng. Septimiu.Pop@ael.utcluj.ro					
laboratory / project Assist. Prof. Vlad Bande, PhD Eng. Vlad.Bar				Vlad.Bande@ael.utcluj.r	<u>o</u>				
Eng. Marius Taut, PhD. Stud. Marius.Taut@ael.utcluj.ro									
2.5 Year of study	Ш	2.6 Semeste	ester 1 2.7 Assessment E 2.8 Subject category					DS/DI	

3. Estimated total time

3.1 Number of hours per week	5	of which:	3.2 course	2	3.3 seminar / laboratory	3
3.4 To Total hours in the curriculum	70	of which:	3.5 course	28	3.6 seminar / laboratory	42
Distribution of time						
Manual, lecture material and notes, bibliography						25
Supplementary study in the library, online specialized platforms and in the field						7
Preparation for seminars / laboratories, homework, reports, portfolios and essays					19	
Tutoring					2	
Exams and tests						2
Other activities:						

3.7 Total hours of individual study	55
3.8 Total hours per semester	125
3.9 Number of credit points	5

4. Pre-requisites (where appropriate)

	11 1 7
	Signal Spectral Analysis; Signal Sampling and Quantifying, Analysis and Design of
4.1 curriculum	Electronic Circuits with Transistors and Operational Amplifiers, Boolean Algebra,
	Analysis and Design of Digital Combinatorial and Sequential Circuits.

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

4.2 competence Computer usage, Electronic Lab Tools usage (Digital Multimeter, Scope, etc.)

5. Requirements (where appropriate)

5.1. for the course	Amphitheatre, Cluj-Napoca
5.2. for the seminars / laboratories / projects	Laboratory, Cluj-Napoca

6. Specific competences

- C2. Application of basic methods for the signals acquisition and processing
 - C2.1 Temporal, spectral and statistical characterization of signals
 - C2.2 Explaining and interpreting the methods of acquisition and processing of signals
 - C2.3 Use of simulation environments for signal analysis and processing
 - C2.4 Use of the specific method and tools for signal analysis

C3 Application of the basic knowledge, concepts and methods regarding the architecture of computing systems, microprocessors, microcontrollers, programming languages and techniques

- C3.4 Development of programs for a general and / or specific programming language, starting from the specification of the requirements and until the execution, debugging and interpretation of the results in correlation with the processor used
- C3.5 Projects involving hardware (processors) and software (programming) components C4. Design and use of low complexity hardware and software applications specific to the applied electronics
 - C4.1 Defining the concepts, principles and methods used in the fields: computer
 programming, high-level and specific languages, CAD techniques for making electronic
 modules, microcontrollers, computer systems architecture, programmable electronic
 systems, graphics, reconfigurable hardware architectures
 - C4.2 Explanation and interpretation of the specific requirements of the hardware and software structures in the fields: computer programming, high-level and specific languages, CAD techniques for making electronic modules, microcontrollers, computer systems architecture, programmable electronic systems, graphics, reconfigurable hardware architectures

Cross competences

Professional competences

N.A.

7. Discipline objectives (as results from the key competences gained)

7.1 General objective	The development of skills in designing, modeling and simulation of mixt (analog and digital) electronic circuits and systems
7.2 Specific objectives	 Understanding the types type, structure and performances of AD/DA conversion circuits Specify, design, analyze and test the data acquisition system based on application requirements

UNIVERSITATEA TEHNICĂ DIN CLUJ-NAPOCA Facultatea de Electronică, Telecomunicații și Tehnologia Informației

8.

. Contents		
8.1 Lecture (syllabus)	Teaching methods	Notes
1. Introduction to DASF. ● Analog and digital quantities. ● Logical		
levels. Binary representations.		
2. DAC (Digital to Analog Converter): definitions, static and dynamic		
parameters, errors.		
3. Weighted resistor networks.		
4. R/2R resistor networks. ● Combined resistor networks.		
5. Electronic devices in the DAC structure: characteristics,		
performances.		
6. Examples of integrated DAC circuits ◆ Characteristics. ◆		
Applications.	Evnasura discussion	
7. Bipolar DACs ● BCD DAC.	Exposure, discussion, interactive teaching	
8. ADC (Analog to Digital Converter): definitions, static and dynamic	style	
parameters, errors.	Style	
9. Parallel ADC.		
10. Feedback ADC.		
11. Intermediate quantity ADC (frequency, duty factor).		
12. Intermediate quantity ADC (time). ◆ Sigma-Delta ADC.		
13. Electronic devices in the ADC structure: characteristics,		
performances. ◆ Connecting DACs and ADCs to uP systems.		
14. Conditioning and sampling the analog signal for conversion. •		
Information scaling in a mixt (analog/digital/analog) transmission		
path		
Bibliography:		
1. M. Dăbâcan, – "Bazele sistemelor de achiziție de date", Editura	Casa Cărții de Știință, ISB	N 973-686
565-7, 295 pagini, Cluj-Napoca, 2004.		
2. M. Dăbâcan, – "Data Acquisition Systems Fundamentals", Editu	ıra Casa Cărții de Știință	, ISBN 973
686-566-5, 295 pagini, Cluj-Napoca, 2004		
8.2 Seminar	Teaching methods	Notes

8.2 Seminar	Teaching methods	Notes
1. Electrical encoding of numbers		
2. Weighted resistor networks.		
3. Combined resistor networks.	Exposure, discussion,	
4. DAC applications.	interactive teaching	
5. ADC applications.	style	
6. Desining a data acquisition system.		
7. Combined problems, exam preparation.		
8.3 Laboratory	Teaching methods	Notes
1. Sampling theory		
2. Sample and Hold circuits		
3. Weighted resistor networks		
4. R-2R resistor networks	Exposure, discussion,	
5. Combined resistor networks	interactive teaching	
6. Integrated DAC	style	
7. Digitally controlled filter		
8. Feedback ADC - Counter		
9. Feedback ADC - Follower		

Universitatea Tehnică din Cluj-Napoca • Facultatea de Electronică, Telecomunicații și Tehnologia Informației Str. George Barițiu nr. 26-28, 400027, Cluj-Napoca, Tel: 0264-401224, Tel/Fax: 0264-591689, http://www.etti.utcluj.ro

10. Feedback ADC – Successive Approximation Register	
11. Voltage controlled oscillator	
12. Charge compensated modulator	
13. Recover lost labs	
14. Test	
Bibliography	
https://ael.utcluj.ro/?page_id=723⟨=en	

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The discipline content and the acquired skills are in agreement with the expectations of the professional organizations and the employers in the field, where the students carry out the internship stages and/or occupy a job (in the field of electronic circuits design, and the expectations of the national organization for quality assurance (ARACIS).

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment	10.3 Weight in
		methods	the final grade
10.4 Course	Problem solving	Exam (E)	60%
10.4 Course	Understanding	Quiz (Q)	5%
10.5 Seminar/	Electronic Design	Homework (H)	20%
10.5 Laboratory	Lab measurements	Lab test (L)	15%

10.6 Minimum standard of performance

Quality level:

Minimum knowledge:

- Knowledge of Bipolar DACs, ADC, Electronic devices in the ADC structure
- Conditioning and sampling the analog signal for conversion. Information scaling in a mixt (analog/digital/analog) transmission path

Minimum competences:

- Recognize the most common digital codes, use translation algorithms between various codes (including human representation)
- Design a Data Acquisition System using integrated circuits (amplifiers, DA and AD converters) and integrate with a microprocessor system
- Analyze the behavior and performances of a Data Acquisition System, based on the structure.
- Generate the specs for the software needed in the Data Acquisition System

Quantitative level:

• $E \ge 4$, $N = (E*0.60+Q*0.05+H*0.20+L*0.15) \ge 5$

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

Date of filling in: 23.06.2023	Responsible	Title Surname NAME	Signature
	Course	Prof. Mircea Alexandru Dăbâcan, PhD Eng.	
	Applications	Assoc.Prof.Liviu Viman, PhD Eng.	
		Assoc.Prof. Septimiu Pop, PhD Eng.	
		Assist.Prof. Vlad Bande, PhD Eng.	
		Eng. Marius Taut, PhD. Stud.	

Date of approval in the Department of Applied Electronics 30.06.2023	Head of Department Prof. Dorin PETREUS, PhD Eng.
Date of approval in the Council of Faculty of Electronics, Telecommunications and Information Technology 12.07.2023	Dean Prof.Ovidiu Aurel POP PhD Eng