

SYLLABUS

1. Data about the program of study

1.1 Institution	Technical University of Cluj-Napoca
1.2 Faculty	Electronics, Telecommunications and Information Technology
1.3 Department	Applied Electronics
1.4 Field of study	Electronics Engineering, Telecommunications and Information
1.4 Field of study	Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Applied Electronics
1.7 Form of education	IF-Full time
1.8 Subject code	36.00

2. Data about the subject

2.1 Subject name		Power	Ele	ctro	nics				
2.2 Subject area Metho			eoretical area						
			thodological area						
			nalysis area						
2.3 Course responsible/lecturer			As	sist.	Prof. Pătărău Toma, Ph	DE	ng. – toma.patarau@ael.	utcluj.ro	
2.4 Teachers in charge of applications		As	sist.	Prof. Pătărău Toma, Ph	DE	ng.– toma.patarau@ael.u	utcluj.ro		
2.5 Year of study		2.6 Semeste	r	2	2.7 Assessment	Е	2.8 Subject category	DD/DI	

3. Estimated total time

3.1 Number of hours per week	4	of which, 3.2 course	2	3.3 applications	2	
3.4 Total hours in the curriculum	56	of which, 3.5 course	28	3.6 applications	28	
Individual study						
Manual, lecture material and notes, bibliography						
Supplementary study in the library, online and in the field						
Preparation for seminars/laboratory works, homework, reports, portfolios, essays						
Tutoring						
Exams and tests						
Other activities						
3.7 Total hours of individual study 19						
3.8 Total hours per semester 75						

4. Pre-requisites (where appropriate)

3.9 Number of credit points

4.1 Curriculum	
4.2 Competence	Knowledge of electronics, system control and magnetic theory

3

5. Requirements (where appropriate)

5.1. For the course	Amphitheatre, Cluj-Napoca
---------------------	---------------------------

Laboratory, Cluj-Napoca

6. Specific competences

ſ		
		C4 - To design and use low complexity hardware and software applications, specific to applied
		electronics
	Professional skills	 C4.3 Identification and optimization of hardware and software solutions of problems related to: industrial electronics, medical electronics, automotive electronics, automation, robotics, production of consumer goods C4.4 Use of appropriate performance criteria for the evaluation, including by simulation, of hardware and software of dedicated systems or service activities in which microcontrollers or computing systems of reduced or medium complexity are used C5 - Application of the basic knowledge, concepts and methods from: power electronics, automatic systems, electricity management, electromagnetic compatibility C5.1 Defining the specific elements that individualize the electronic devices and circuits in the fields of: power electronics, automated systems, electricity management, medical electronics, automotive electronics, automatic systems, electricity management, medical electronics, automotive electronics, consumer goods C5.5 Designing, using established principles and methods of subsystems of reduced complexity, from the fields of applied electronics; power electronics, automated systems, electricity management, medical electronics, electricity management, medical electronics, auto applied electronics, automated systems, electricity management, medical electronics, electricity management, medical electronics; oonsumer goods
		 testing and troubleshooting of the appliances and equipment in the fields of applied electronics C6.5 Designing the manufacturing and maintenance technology (specifying the necessary components and operations) of low and medium complexity products from the fields of applied electronics
		N.A.
	Cross competences	

7. Discipline objectives (as results from the key competences gained)

7.1 General objectives	Development of professional skills in the field of design, simulation		
7.1 General objectives	and testing of electronic power circuits.		
	1. The assimilation of theoretical knowledge regarding design and		
7.2 Specific objectives	simulation of electronic circuits using advanced simulation programs;		
	2. Obtaining the skills and abilities necessary for implementation		
	and testing of the performance of power electronic circuits.		

Universitatea Tehnică din Cluj-Napoca • Facultatea de Electronică, Telecomunicații și Tehnologia Informației Str. George Barițiu nr. 26-28, 400027, Cluj-Napoca, Tel: 0264-401224, Tel/Fax: 0264-591689, http://www.etti.utcluj.ro

8. Contents

8.1	Lecture (syllabus)	Teaching methods	Notes
1.	Introduction to power electronics. The use of power	Ŭ,	
	electronics inside an automatic control system. Converters	s	
	classifications. Performances of power electronic devices on	Ğ	
	switching mode.	ise,	
2.	Power semiconductor diode (Structure. Symbol. Turn on and	erc	
	turn off the diode. Reverse recovery current. Power diode used	e x	
	in switching inductive loads).		
3.	Bipolar junction transistor (Structure. Operating principle. Base	ach	
	drive principle. Darlington connection. Emitter drive principle).	, te	
4.	Power MOSFET transistor (Structure. Operating principle. Gate	ion	
	drive principle).	itat	baro
5.	Thyristor (Triggering the SCR using phase control). TRIAC	ser	kbc
	(Structure. Operating principle. Features).	bre	olac
6.	Insulated gate bipolar transistor (Structure. Electrical	problem p evaluation	or, b
	equivalent schematics. Gate drive principle. Over-current and	ble	cto
	short-circuit current protection).	prc	oje
7.	Bidirectional switch. Inverter leg configuration. Bootstrap drive	on, ve (, pr
_	principle and gate isolated control)	atio	ion
8.	Inverter's leg protection against short-circuit (Introducing a	Drm	itat
	dead time interval in the drive signals. The use of the snubbers	, fc	ser
0	on the supply DC link).	, exemplification, study, formative	Use of .ppt presentation, projector, blackboard
9.	Half-bridge and full-bridge single phase inverters with full-wave	n, e st	bt
	operation mode (Operation principle. Calculus of the	atio	f.p
	frequency's spectrum harmonics. Analysis of the active energy transfer and energy recovering modes).	erse	e c
10	Full-bridge single phase inverters with phase displacement	A A A A A A A A A A A A A A A A A A A	S S
10.	control. Freewheeling mode. Three-phase full-bridge inverters	8	
	in six step operation. Vector model of a three-phase full-wave	stic	
	inverter. Transitions diagram.	ina	
11	Selected harmonics elimination Pulse Width Modulation	, ř	
	(PWM). Sinusoidal PWM. Overmodulation.	ion	
12.	Space vector PWM. Linear SV-PWM modulation.	Presentation, heuristic conversation, exemplification, problem presentation, teaching exercise, case study, formative evaluation	
	Frequency converters. Voltage, current and oscillating DC link	ser	
	converters.	Pre	
14.	AC choppers. Exam revision and preparing.		
	ferences	I	
- 1	Palaghiță N., "Electronică de Putere – partea I – Dispozitive semico	onductoare de putere",	Editura
1	Mediamira, Cluj-Napoca, 2002., 202 pag.		
- 1	Palaghiță N., Petreuș D., Fărcaș C., Electronică de putere partea a I	I-a, Circuite electronice	e de putere,
E	Editura Mediamira, Cluj-Napoca, 2004, 310 pag., ISBN 973-713-03	9 -1.	
- 1	Bimal K. Bose, Modern Power Electronics and AC Drives, Prentice I	Hall; 1 Edition, October	2001, 736
H	pag., ISBN-13: 007-6092010555		
	Mohan N., Undeland T., M., Robbins W., P., Power Electronics – Co	onverters, Applications	and Design,
(New York: Wiley), 1995.		

- Rashid M., Power Electronics: Circuits, devices and Applications, Second Edition, Prentice Hall, USA, 1993.

8.2 Applications	Teaching methods	Notes			
1. Laboratory description. Laboratory protection measures.		tal			
2. BJT base drive circuits.	<u>ic</u>	rd			
3. BJT parallel driving.	lact	erimer board			
4. Power MOS-FET gate drive circuits with galvanic insulation	dic	xpe tic l			
5. Snubber protection circuits	and experimental proof, didactic exercise, team work	Use of laboratory instrumentation, experimenta boards, computers, white/magnetic board			
6. Thyristor. Operating principles. Static characteristics	am work	tior			
7. Simulation of the power MOS-FET gate drives circuits.	tal ກຸ່	ntai :e/r			
8. Thyristor gate drive principle using phase control of the firing	nen tear	vhit			
angle.	ie, t	truı s, v			
9. TRIAC switching using TCA785 IC.	d experi exercise,	ratory instri computers,			
10. Single-phase full-bridge inverter control using Bootstrap	d e exe	ndr Jpu			
technique		rato			
11. Overcurrent and short-circuit protection for IGBT	ctic	iboi ds, (
12. Gate drive circuits for GTO thyristor.	Didactic	e of labc boards,			
13. Simulating the single-phase AC Choppers		bc bc			
14. Final assessment. Recovering the missing labs.		ŝ			
References					
- Palaghiță N., "Electronică de Putere – partea I – Dispozitive semico	onductoare de putere",	, Editura			
Mediamira, Cluj-Napoca, 2002., 202 pag.	Mediamira, Cluj-Napoca, 2002., 202 pag.				
- Palaghiță N., Petreuș D., Fărcaș C., Electronică de putere partea a II-a, Circuite electronice de putere,					

- Palaghiță N., Petreuș D., Fărcaș C., Electronică de putere partea a II-a, Circuite electronice de putere, Editura Mediamira, Cluj-Napoca, 2004, 310 pag., ISBN 973-713-039-1.

- Bimal K. Bose, Modern Power Electronics and AC Drives, Prentice Hall; 1 Edition, October 2001, 736 pag., ISBN-13: 007-6092010555
- Mohan N., Undeland T., M., Robbins W., P., Power Electronics Converters, Applications and Design, (New York: Wiley), 1995.
- Rashid M., Power Electronics: Circuits, devices and Applications, Second Edition, Prentice Hall, USA, 1993.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The discipline content and the acquired skills are in agreement with the expectations of the professional organizations and the employers in the field, where the students carry out the internship stages and/or occupy a job (in the field of applied electronics), and the expectations of the national organization for quality assurance (ARACIS).

10. Evaluations

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade				
10.4 Course	Solving a problem and answering a set of theoretical questions	Written exam	60%				
10.5 Applications	Verification of skills and abilities acquired as a result of laboratory activities	Oral examination during the semester	40%				
10.6 Minimum standard of performance							
Quality level:							
Minimum knowledge:							

✓ Knowledge of the basic operation of studied power devices

✓ Knowledge of the basic operation of the driver circuits studied Minimum competences:

- ✓ To be able to describe the functionality of the main power devices
- ✓ To be able to choose the proper power device in specific applications

Quantitative level:

- Participation to all applications and laboratories
- ✓ The final exam and laboratory grades to be higher than 5
- ✓ The final grade is calculated as follows: 0.6*Exam grade+0.4*laboratory grade

Date of filling in	Responsible	Title, Name Surname	Signature
23.06.2023	Course	Assist. Prof. Pătărău Toma, PhD Eng.	
	Applications	Assist. Prof. Pătărău Toma, PhD Eng.	

Date of approval in the Department of Applied Electronics	Head of department
30.06.2023	Prof. Dorin PETREUȘ, PhD Eng.
Date of approval in the Council of Faculty of Electronics, Telecommunications and Information Technology	Dean Prof. Ovidiu Aurel POP, PhD Eng.
12.07.2023	