

SYLLABUS

1. Data about the program of study

- Data about the program or study		
1.1 Institution	Technical University of Cluj-Napoca	
1.2 Faculty	Faculty of Electronics, Telecommunications and information	
1.2 Faculty	Technology	
1.3 Department	Applied Electronics	
1 4 Field of study	Electronic Engineering, Telecommunications and Information	
1.4 Field of study	Technologies	
1.5 Cycle of study	Bachelor of Science	
1.6 Program of study / Qualification	Applied Electronics / Engineer	
1.7 Form of education	Full time	
1.8 Subject code	56.10	

2. Data about the subject

- Bata about the subj								
2.1 Subject name		Integra	Integrated Systems					
Theore			etic	tical area				
2.2 Subject area Metho			dol	logica	al area			
		Analyt	ic a	rea				
2.2 Causes recognible			Assist. Prof. Adrian Cătălin TĂUT, Phd. Eng. –					
2.3 Course responsib	ie		adrian.taut@ael.utcluj.ro					
			As	sist. I	Prof. Adrian Cătălin TĂl	JT,	Phd. Eng.–	
2.4 Teacher in charge with seminar /			adrian.taut@ael.utcluj.ro					
laboratory / project			Assist. Prof. Alexandra FODOR, PhD Eng					
			alexandra.fodor@ael.utcluj.ro					
2.5 Year of study	IV	2.6 Semeste	ester 2 2.7 Assessment V 2.8 Subject category D			DS/DO		

3. Estimated total time

3.1 Number of hours per week	5	of which:	3.2 course	2	3.3 seminar / laboratory	3
3.4 To Total hours in the curriculum	70	of which:	3.5 course	28	3.6 seminar / laboratory	42
Distribution of time						
Manual, lecture material and notes, bibliography						36
Supplementary study in the library, online specialized platforms and in the field						6
Preparation for seminars / laboratories, homework, reports, portfolios and essays						9
Tutoring						2
Exams and tests						
Other activities:						-

3.7 Total hours of individual study	55
3.8 Total hours per semester	125
3.9 Number of credit points	5

4. Pre-requisites (where appropriate)

_	• '	
	1.1 curriculum	Electronic Devices, Electrical Circuits Theory, Signals Theory, Digital Integrated
4.1 curriculum	Circuits, Computer Aided Design, Electronic Microsystems Technology	

	do Flootropio	Telecomunicatji și	Tabaalaala	Informatioi
FOCUIIOTEO	ae Fiectionica	Telecomunicalii si	1 e nnologia	miormaniei
i acanaica	ac Licensonica,		101111010gia	II II OITTI MIIOI

4.2 competence	

5. Requirements (where appropriate)

5.1. for the course	Amphitheatre, Cluj-Napoca
5.2. for the seminars / laboratories / projects	Laboratory, Cluj-Napoca

6. Specific competences

- C2. Applying the basic methods for signal acquisition and processing.
 - C2.3 Use of simulation environments for signal analysis and processing
 - C2.4 Use of the specific method and tools for signal analysis
- C3. Application of the basic knowledge, concepts and methods regarding the architecture of computer systems, microprocessors, microcontrollers, languages and programming techniques.
- C3.5 Projects involving hardware (processors) and software (programming) components C4. Design and use of low complexity hardware and software applications specific to the applied electronics.
 - C4.1 To define the concepts, principles and methods used in the fields of computer programming, high-level and specific languages, CAD techniques for making electronic modules, microcontrollers, computer systems architecture, programmable electronic systems, graphics, reconfigurable hardware architectures
 - C4.5 Design of dedicated equipment in the fields of applied electronics, which use: microcontrollers, programmable circuits or computing systems with simple architecture, including related programs

N.A.

Cross competences

Professional competences

7. Discipline objectives (as results from the key competences gained)

7.1 General objective	Developing expertise in simulation and modelling of embedded systems.
7.2 Specific objectives	1 Assimilation of theoretical knowledge on embedded systems simulation.
	2. Obtaining skills useful in embedded systems simulation and design.

8. Contents

8.1 Lecture (syllabus)	Teaching methods	Notes
1. Course description. Defining, historical point of	Oral presentation,	Power-Point slides,
view and applications of embedded systems.	discussions, solved	Video-projector
2. Design Constraints in Embedded Systems.	exercises, case study	presentation

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

3. Standards used by Embedded Systems.		
4. Instructions Set Architectures		
5. Internal Processor Design		
6. Input/Output Ports Management		
7. Device Drivers.		
8. Embedded Operating Systems.		
9. Multitasking and Process Management		
10. Middleware and Application Software.		
11. Creating an Embedded System Architecture		
12. Implementation.		
13. Testing		
14.Recapitulation. Preparation for the final exam		
Diblic manufact	<u> </u>	•

Bibliography

- 1. Peter Marwedel Embedded System Design ISBN 978-0-387-29237-3 (2006)
- 2. Mark I. Montrose PCB Design techniques for EMC compliance ISBN 0-7803-1131-0 (2001);
- 3. Eric Bogatin, Signal Integrity Simplified. New York, United States: Prentice Hall, 2008;
- 4. Roberto Cristi Modern Digital Signal Processing ISBN 0-534-40095-7 (2004)
- 5. Jerry C. Whitaker The Electronics Handbook ISBN 0-8493-8345-5 (2004)
- 6. Alin Grama, "Sisteme integrate notițe de curs", www.ael.utcluj.ro

8.2 Seminar / laboratory / project	Teaching methods	Notes
1. 8/16 bits microcontroller systems – getting		
started, software editor, compilation, running the		
software, debuggin		
2. 8/16 bits microcontroller systems – I/O operations,		Use of laboratory
internal Analog-to-Digital Convertor, PWM generatio	Didantia and	instrumentation,
3. 8/16 bits microcontroller systems –	Didactic and	experimental
communications interfaces	experimental proof, case study, teamwork	boards, laboratory
4. Sensors, actuators, mechatronics systems	case study, teamwork	computers, white/magnetic
modeling		board
5. Software/Hardware tests for embedded systems		Doard
6. PCB prototype technology		
7. Assembly and test of electronic boards		

Bibliography

- 1. Peter Marwedel Embedded System Design ISBN 978-0-387-29237-3 (2006)
- 2. Mark I. Montrose PCB Design techniques for EMC compliance ISBN 0-7803-1131-0 (2001);
- 3. Eric Bogatin, Signal Integrity Simplified. New York, United States: Prentice Hall, 2008;
- 4. Roberto Cristi Modern Digital Signal Processing ISBN 0-534-40095-7 (2004)
- 5. Jerry C. Whitaker The Electronics Handbook ISBN 0-8493-8345-5 (2004)
- 6. Alin Grama, "Sisteme integrate –notițe de curs", www.ael.utcluj.ro

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The discipline content and the acquired skills are in agreement with the expectations of the professional organizations and the employers in the field, where the students carry out the internship stages and/or occupy a job (in the field of research and electric circuit design, schematic integrator), and the expectations of the national organization for quality assurance (ARACIS).

10. Evaluation

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade
10.4 Course	The level of acquired theoretical knowledge and practical skills	3 Summative evaluation written exam (theory and problems)	30%
10.5 Seminar/ Laboratory	The level of acquired knowledge and abilities	Continuous formative evaluation semester project	70%

10.6 Minimum standard of performance

Quality Level:

Minimum knowledge:

- ✓ Knowledge of the main design constraints in embedded systems.
- ✓ Knowledge of designing a device driver for embedded systems.
- ✓ Knowledge of designing a cooperative and non-cooperative embedded operating system.
- ✓ Knowledge of the techniques used in multitasking and process management in embedded systems.

Minimum competences:

- Can describe the main design constraints for an embedded real time operating system.
- ✓ Can describe the main steps in designing a device driver for embedded systems.
- ✓ Can characterize the principles behind implementing a cooperative and non-cooperative embedded real time operating system.
- ✓ Can exemplify how to handle multitasking and process management in embedded real time operating systems.

Quantitative level:

- ✓ Attend to all laboratory sessions
- ✓ The written exam and laboratory project marks must be greater or equal to 5.
- √ The mark will be computed using the following equation: 0.3*Exam_mark + 0.7*Laboratory_mark

Date of filling in: 23.06.2023	Responsible	Title Surname NAME	Signature
	Course	Assist. Prof. Adrian Cătălin TĂUT, Phd. Eng.	
	Applications	Assist. Prof. Adrian Cătălin TĂUT, Phd. Eng.	
		Assist. Prof. Alexandra FODOR, PhD Eng.	

Facultatea de Electronică, Telecomunicatji și Tehnologia Informației

Date of approval in the Department of Applied Electronics **Head of Department**

30.06.2023

Date of approval in the Council of Faculty of Electronics,

Telecommunications and Information Technology

Dean

Prof. Ovidiu Aurel POP, PhD Eng.

Prof. Dorin PETREUŞ, PhD Eng.

12.07.2023