UNIVERSITATEA TEHNICĂ

UNIVERSITATEA TEHNICĂ DIN CLUJ-NAPOCA

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

SYLLABUS

1. Data about the program of study

- Data about the program of study	_			
1.1 Institution	Technical University of Cluj-Napoca			
1.2 Faculty	Faculty of Electronics, Telecommunications and information			
1.2 Faculty	Technology			
1.3 Department	Applied Electronics			
1 4 Field of study	Electronic Engineering, Telecommunications and Information			
1.4 Field of study	Technologies			
1.5 Cycle of study	Bachelor of Science			
1.6 Program of study / Qualification	Applied Elects / Engineer			
1.7 Form of education	Full time			
1.8 Subject code	56.20			

2. Data about the subject

2.1 Subject name		Data A	Data Acquisition Systems					
2.2 Subject area		Electro	Electronic and Telecommunications Engineering					
2.3 Course responsib	le	·	Assoc. Prof. Viman Liviu, PhD Eng. – liviu.viman@ael.utcluj.ro					
2.4 Teacher in charge with seminar / laboratory / project Assoc. Prof. Viman Liviu, PhD Eng. – liviu.viman@ael.utcluj.ro Assoc. Prof. Pop Septimiu, PhD Eng. – septimiu.pop@ael.utcl Assist. Prof. Baciu Ionel, PhD Eng. – ionel.baciu@ael.utcluj.ro			tcluj.ro					
2.5 Year of study	IV	2.6 Semeste	er	2	2.7 Assessment	٧	2.8 Subject category	DS/DO

3. Estimated total time

3.1 Number of hours per week	4	of which:	3.2 course	2	3.3 seminar / laboratory	2
3.4 To Total hours in the curriculum	70	of which:	3.5 course	28	3.6 seminar / laboratory	42
Distribution of time						
Manual, lecture material and notes, bibliography						37
Supplementary study in the library, online specialized platforms and in the field						-
Preparation for seminars / laboratories, homework, reports, portfolios and essays						14
Tutoring						2
Exams and tests						2
Other activities:						-

3.7 Total hours of individual study	55
3.8 Total hours per semester	125
3.9 Number of credit points	5

4. Pre-requisites (where appropriate)

4.1 curriculum	
4.2 competence	

UNIVERSITATEA TEHNICĂ DIN CLUJ-NAPOCA

5. Requirements (where appropriate)

5.1. for the course	Amphitheatre, Cluj-Napoca
5.2. for the laboratories / projects	Laboratory, Cluj-Napoca

6. Specific competences

Professional competences	 C2. Applying the basic methods for the acquisition and processing of signals C2.1 Temporal, spectral and statistical characterization of signals C2.2 Use of simulation environments for signal analysis and processing C2.3 Use of simulation media for signal analysis and processing C2.4 Use of specific methods and tools for signal analysis C3. Application of the basic knowledge, concepts and methods regarding the architecture of computer systems, microprocessors, microcontrollers, languages and programming techniques C4. Design and use of low complexity hardware and software applications specific to the applied electronics
Cross competences	N.A.

7. Discipline objectives (as results from the key competences gained)

7.1 General objective	Developing skills regarding analysis and design of the data acquisition systems
7.2 Specific objectives	 Assimilation of theoretical knowledge on the functioning and performances of the support circuits for DAC and ADC. Obtaining the necessary skills to: develop, designing (and computer aided design) and analyze the data acquisition systems.

8. Contents

8.1 Lec	ture (syllabus)	Teaching methods	Notes
1.	Defining a Data Acquisition System. Specific		
	Parameters.		
2.	Adapting the Data Acquisition System to the		
	required application.	Presentation,	
3.	Data Acquisition System Structure. Informational	heuristic conversation,	Use of .ppt
	path.	exemplification,	presentation,
4.	Intermediate data processing.	teaching exercise, case	projector
5.	Specifying the structural blocks.	study,	
6.	Performance / structure / price ratio.		
7.	Conditioning stages design.		
8.	ADC design.		

UNIVERSITATEA TEHNICĂ DIN CLUJ-NAPOCA

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

DAC and output amplifiers design.		
10. Embedded system design.		
11. Communication paths. Distributed Data		
Acquisition System.		
12. Block and system calibration. Functional and		
performance analyzis.		
13. Data Acquisition System software component.		
14. Recapitulation. Preparation for the final exam.		
8.2 Project	Teaching methods	Notes
1. Defining a Data Acquisition System. Specific		
Parameters.		
2. Data Acquisition System Structure. Informational	Dungantation	
path.	Presentation,	
Conditioning stages design.	exemplification, case study	
4. Variable gain amplifiers ADC design.	Study	
Embedded system design.		
Processing and displaying data.		
7. Project presentation. Evaluation (P).		
8.3 Laboratory	Teaching methods	Notes
1. General presentation of LabVIEW FPGA and		
SPARTAN-3E Starter Kit board		
2. LabVIEW FPGA project implementation .	Didoctio and	Use of laboratory
3. Events counter for the rotary encoder.	Didactic and	instrumentation,
4. Digital thermometer.	experimental proof, didactic exercise, team	experimental
5. Signal generator.	- work	boards,
6. LCD controller.	WOIK	computers
7. Lab recovery and finalization of laboratory		
activity		
DULE I		

Bibliography

- 1. M. Dăbâcan Data Acquisition Systems Fundamentals, Casa Cărţii de Ştiinţă, ISBN 973-686-566-5, 295 pagini, Cluj-Napoca, 2004.
- 2. Liviu Viman, Septimiu Pop, Ioan Ciascai Sisteme de achiziție de date Măsurarea traductoarelor cu coardă vibrantă și rezistive din construcțiile hidrotehnice, Cluj-Napoca, Romania, Ed. Mediamira, 229 pagini, ISBN: 978-973-713-332, 2015.
- 3. Liviu Viman, Septimiu Pop DATA ACQUISITION SYSTEMS Applications development with LabVIEW FPGA and Spartan-3E Starter Kit Board, Cluj-Napoca, Romania: U.T.PRESS, 97 pagini, ISBN: 978-606-737-043-02015, 2015.
- 4. Jack Ganssle... [et al.] Embedded Hardware: Know It All, Newnes, ISBN: 978-0-7506-8584-9, 2008.
- 5. Robert Oshana, Mark Kraeling Software Engineering for Embedded Systems Methods Practical Techniques and Applications, Elsevier, ISBN: 978-0-12-415917-4, 2013.
- 6. On line references.

UNIVERSITATEA TEHNIÇÂ

UNIVERSITATEA TEHNICĂ DIN CLUJ-NAPOCA

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The skills acquired will be no	ecessary for employees	working in the field	of designing electronic	circuits
The skins acquired tim be in	cocoodi, ioi cilipio, cc.	, working in the nera	or acoigning cicotionic	011 04110

10. Evaluation

Activity type	10.1 Assessment criteria	I III / Accessment methods	10.3 Weight in the final grade
10.4 Course	The level of acquired theoretical knowledge and practical skills	Summative evaluation written exam (E).	40%
10.5.1 Laboratory	The level of acquired knowledge and abilities	Laboratory tests (T1, T2, T3)	30%
10.5.2 Project	The level of acquired knowledge and abilities	Evaluation (P)	30%

10.6 Minimum standard of performance

Qualitative level:

Minimal knowledge:

- ✓ Knowledge of the main properties and performances of the support circuits for ADC and DAC.
- ✓ Knowledge of the properties and characteristics of the functional blocks from the data acquisition systems structure
- ✓ Knowledge of the software interaction techniques with data acquisition systems

Minimal skills:

- ✓ To be able to mention the main properties of the support circuits for ADC and DAC
- ✓ To be able to specify the main features of the functional blocks from the data acquisition systems structure

Quantitative level:

- ✓ Perform all laboratory work
- ✓ The exam and laboratory notes must be at least 5
- ✓ The discipline note is calculated with the relation:

0,4*Nota_examen+0,3*Nota_laborator+0,3*Nota_proiect where the laboratory note is calculated with the relation: **Nota_laborator=(T1+T2+T3)/3)**

Date of filling in:	Responsible	Title Surname NAME	Signature
21.09.2022	Course	Assoc. Prof. Viman Liviu, PhD Eng.	
	Applications	Assoc. Prof. Viman Liviu, PhD Eng.	
		Assoc. prof. Pop Septimiu, PhD Eng.	
		Assist. Prof. Baciu Ionel, PhD Eng.	

UNIVERSITATEA TEHNICĂ DIN CLUJ-NAPOCA

Date of approval in the Department of Applied Electronics

15.09.2022

Date of approval in the Council of Faculty of Electronics,
Telecommunications and Information Technology

Director Departament EA
Prof.dr.ing. Dorin PETREUS

Director Departament EA
Prof.dr.ing. Dorin PETREUS.