

SYLLABUS

1. Data about the program of study

1.1 Institution	Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Electronics, Telecommunications and Information Technology
1.3 Department	Mathematics
1.4 Field of study	Electronic Engineering, Telecommunications and Information Technologies
1.5 Cycle of study	Bachelor of Science
1.6 Program of study / Qualification	Telecommunications Technologies and Systems/ Engineer Applied Electronics/Engineer
1.7 Form of education	Full time
1.8 Subject code	TST-E09.00/EA-E09.00

2. Data about the subject

2.1 Subject name		Differe	Differential Equations					
2.2 Subject area Meth		Theore	neoretical area					
		Metho	Methodological area					
		Analyt	Analytic area					
2.3 Course responsible		Prof. Dorian Popa, Ph.D. – Popa.Dorian@math.utcluj.ro						
2.4 Teacher in charge with seminar /		٨٥	cict	Drof Alina Daias Dh D	ha	ias.alina@math.utcluj.ro		
laboratory / project		AS	SISt.	PTUL AIIIId Dalas, PH.D -	- Dd	lias.aliita@filatii.utcluj.f0		
2.5 Year of study	1	2.6 Semeste	r	2	2.7 Assessment	Е	2.8 Subject category	DF/DI

3. Estimated total time

3.1 Numbers of hours per week:	4	3.2 of which, lecture	2	3.3 applications	2
3.4 Total hours in the curriculum:	56	3.5 of which,	28	3.6 applications	28
Distribution of time					
Manual, lecture material and notes, bibliography					30
Supplementary study in the library, online specialized platforms and in the field					5
Preparation for seminars / laboratories, homework, reports, portfolios and essays				28	
Tutoring					3
Exams and tests					3
Other activities:	•				
3.7 Total hours of individual study		59			
3.8 Total hours per semester 125					

4. Pre-requisites (where appropriate)

3.9 Number of credit points

4 1 curriculum	Calculus. Functions of one variable. Operating with basic Mathematical,
	Engineering and Computer Science concepts
	C1.1 – Recognizing and describing concepts that are specific to the fields of calculability, complexity, programming paradigms, and modeling computational and communication systems

5

C1.3 – Building models for various components of computing systems C1.5 – Providing a theoretical background for the characteristics of the designed
systems

5. Requirements (where appropriate)

5.1. for the course	Basic knowledge of differential and integral Calculus for one variable
5.2. for the seminars/laboratories/ projects	Basic knowledge of differential and integral Calculus for one variable

6. Specific competences

Professional competences	C1. Use of the fundamental elements related to devices, circuits, systems, instrumentation and electronic technology C2. Applying the basic methods for the acquisition and processing of signals C3. Application of the basic knowledge, concepts and methods regarding the architecture of computer systems, microprocessors, microcontrollers, languages and programming techniques
Transversal competences	N/A

7. Discipline objectives (as results from the key competences gained)

7.1 General objective	A presentation of the concepts, notions, methods and fundamental techniques used in differential equations.
7.2 Specific objectives	Use of the differential equations in order to solve problems in engineering

8. Contents

8.1 Lecture (syllabus)	Teaching methods	Notes
1. Examples which lead to differential equations		
2. Basic notions. Problems concerning differential equations		
3. Differential equations of order one		
4. Existence and uniqueness theorem for the Cauchy problem		
5. Linear equations of order n.	Evolution	
6. Linear and homogeneous equations with constant coefficients	Explanation Demonstration	
7. Linear and nonhogeneous equations with constant coefficients.	Collaboration	
8. Series solutions for differential equations	Interactive	
9. Bessel equation and Bessel functions	activities	
10. Linear systems of differential equations	activities	
11. Partial Differential Equations of order one.		
12. Cauchy problem for partial differential equations of order one		
13. Partial differential equations of order two.		
14. Wave equation. Separation of variables.		
8.2 Seminar/laboratory / project	Teaching methods	Notes

UNIVERSITATEA TEHNICĂ DIN CLUJ-NAPOCA

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

1. Differential equations of order one		
2. Problems concerning differential equations of order one		
3. Differential equations reducible to order one		
4. Cauchy problem. Differential inequalities		
5. Linear and nonhomogeneous equations of order n	Explanation	
6. Differential equations integrated by series	Demonstration	
7. Applications of Bessel functions	Collaboration	
8. Systems of differential equations	Interactive	
9. Applications of Laplace transform	activities	
10. Partial differential equations of order one	activities	
11. Linear partial differential equations of order one		
12. Cvasilinear partial differential equations of order one		
13. Partial differential equations of order two		
14. Applications of partial differential equations of order two.		
Bibliography		
1. V. Barbu, Ecuatii diferentiale, Editura Junimea, 1985.		
2. Peter J.Collins, Differential and Integral Equations, Oxford Universi	ty Press, 2005.	

- 3. R.P.Agarval, D.O'Regan, An Introduction to Ordinary Differential Equations, Springer, 2008.
- 4. D.Popa, Calculus, Mediamira Cluj-Napoca, 2006.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The discipline content and the acquired skills are in agreement with the expectations of the professional Competences acquired will be used in the following COR occupations (Electronics Engineer; Telecommunications Engineer; Electronics Design Engineer; System and Computer Design Engineer; Communications Design Engineer) or in the new occupations proposed to be included in COR (Sale Support Engineer; Multimedia Applications Developer; Network Engineer; Communications Systems Test Engineer; Project Manager; Traffic Engineer; Communications Systems Consultant).

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade
10.4 Course	The level of acquired theoretical knowledge and practical skills	Written exam	80%
10.5 Seminar/Labora tory	The level of acquired knowledge and abilities	Verification through laboratory tests	20%
10.6 Minimum st	andard of performance		
✓ M>5			

UNIVERSITATEA TEHNICĂ DIN CLUJ-NAPOCA

Facultatea de Electronică, Telecomunicatți și Tehnologia Informației

Date of filling in:	Responsible	Title First name SURN	AME	Signature
20.06.2023	Course	Prof. Dorian POPA, Ph		
	Applications	Prof. Dorian POPA, Ph		
		Assist. Prof. Alina BAIA	S, Ph.D	
Date of approval in Department 11.07.2023	the Council of the	Communications	Head of Communication Prof. Virgil DOBROTA, Ph	•
Date of approval in Telecommunicatior 12.07.2023		Faculty of Electronics, Technology	Dean Prof. Ovidiu POP, Ph.D.	