UNIVERSITATEA TEHNIÇÂ

UNIVERSITATEA TEHNICĂ DIN CLUJ-NAPOCA

SYLLABUS

1. Data about the program of study

1.1 Institution	Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Electronics, Telecommunications and Information
1.2 I acuity	Technology
1.3 Department	Physics and Chemistry
1.4 Field of study	Electronic Engineering, Telecommunications and Information
1.4 Field of Study	Technologies
1.5 Cycle of study	Bachelor of Science
1.6 Program of study / Qualification	Telecommunications Technologies and Systems/ Engineer
1.0 Flogram of Study / Qualification	Applied Electronics/Engineer
1.7 Form of education	Full time
1.8 Subject code	TST-E10.00/EA-E10.00

2. Data about the subject

2.1 Subject name		Physic	Physics II					
		Theore	Theoretical area					
		ethodological area						
Analy			lytic area					
2.3 Course responsible Prof. Ioan ARDELEAN, Ph.D – ioan.ardelean@phys.utcluj.ro)				
2.4 Teacher in charge with seminar / Prof. Ioan ARDELEAN, Ph.D – ioan.ardelean@phys.utcluj.ro)				
laboratory / project Assoc.Prof. Traian PETRISOR, Ph.D - traian.petrisorjr@phys.utclu				.utcluj.ro				
2.5 Year of study	1	2.6 Semeste	er	r 2 2.7 Assessment		Е	2.8 Subject category	DF/DI

3. Estimated total time

3.1 Number of hours per week	3 of which: 3.2 course 2 3.3 seminar / laboratory		1			
3.4 To Total hours in the curriculum	42	of which:	3.5 course	28	3.6 seminar / laboratory	14
Distribution of time						Hours
Manual, lecture material and notes, bibliography						24
Supplementary study in the library, online specialized platforms and in the field						10
Preparation for seminars / laboratories, homework, reports, portfolios and essays					18	
Tutoring					3	
Exams and tests					3	
Other activities:					0	

3.7 Total hours of individual study	58
3.8 Total hours per semester	100
3.9 Number of credit points	4

4. Pre-requisites (where appropriate)

4.1 curriculum	Basic background in Physics from High school
4.2 competence	Basic knowledge of Math from High school

Facultatea de Electronică, Telecomunicatji și Tehnologia Informației

5. Requirements (where appropriate)

5.1. for the course	Amphitheatre, Cluj-Napoca
5.2. for the seminars / laboratories / projects	The presence at the seminaries is compulsory.

6. Specific competences

o. specific co	in petences
Professional competences	C1. Use of the fundamental elements related to devices, circuits, systems, instrumentation and electronic technology C2. Applying the basic methods for the acquisition and processing of signals C4. Design, implementation and operation of data, voice, video and multimedia services. This is based on the understanding and the application of fundamental concepts in telecommunications and transmission of information C5. Selecting, installing, configuring and operating fixed or mobile telecommunications equipment. Equipping a site with usual telecommunications networks C6. Solving specific problems of the broadband communications networks: propagation in different environment, circuits and equipment for high frequencies (microwaves and optical).
Transversal competences	N/A

7. Discipline objectives (as results from the key competences gained)

7. Discipline objectives (as results from the key competences gained)					
7.1 General objective	Developing the competences and knowledge related to Advanced Physics useful for Electronics and Applied Electronics, underlying physics of some modern devices (sensors, data storage elements, micro and nanotechnologies, LASER, microscopes with extreme/atomic resolution).				
7.2 Specific objectives	 Understanding and manipulation of basic concepts in Physics, combined with Math. Developing skills and abilities necessary for solving simple and complex problems of Physics. Developing skills and abilities for the analysis of fundamental phenomena in nature and technics which are transposed as problems in the Engineering domain. Acquire the advanced physics background of standard and modern electronic devices, micro and nano-technologies. 				

8. Contents

8.1 Lecture (syllabus)	Teaching methods	Notes
Electric charge and electric field	ive g	Mainly use the
Electric charge. Coulomb interactions. Intensity of the electric	п, se, nin	blackboard, the
field	auo ۱, ion, ercik forr	projector used
The electric potential. Potential gradient and electric field	ion, sation, ion, exerci y, forn	only for
intensity	ssat sat sat sat lific ng tud tior	presentation of
Electric dipole.	rist risti ver mpl sen sen sen uat	some movies with recorded
Gauss law and Applications.	eul ony xer xer rok rok ase	experiments of
duuss iuw unu Applications.		CAPCILITIONS OF

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

physics.

Infinite wire Infinite plaque Spherical charge distributions. *Capacitance and dielectrics*

Capacitor and capacitance. Capacitors in series and parallel Energy storage in capacitors and electric field energy. Dielectrics. Gauss's law in dielectrics

Current, resistance and electromotive force

Current. Resistivity. Resistance. Electromotive force and circuits

The Ohm's law. Continuity equations Energy and power. Dissipation. Joule's law Theory of metallic conduction Current circuits. Resistors in series and parallel Kirchhoff's rules Electrical measuring instruments Charging a capacitor: RC circuits

Magnetic field and magnetic forces

Magnetism. Magnetic field. Magnetic field lines. Magnetic induction. Motion of charged particles in magnetic fields: the Lorentz force. Magnetic force on a current carrying conductor: The Ampere's force between I and B Force and torque on a current loop. The direct current motor The Hall effect.

Sources of magnetic field

Magnetic field of a moving charge. Magnetic field of a current element. The law Biot-Savart . Magnetic field of a **straight** current carrying conductor. Force between parallel conductors. Magnetic field of a circular current loop. Ampere's law and applications (Infinite wire, solenoid, toroid). Magnetic dipole.

Magnetic materials

The Bohr magnetron. Magnetization. Paramagnetism. Diamagnetism. Ferromagnetism. Antiferromagnetism. Ferrimagnetism. Characteristic lengths in magnetism. Magnetic anisotropy. Magnetic domains. Hysteresis. Magnetic dynamics. Landau–Lifshitz–Gilbert equation and mechanical analogy. Tailoring of magnetic properties by dimensionality. Micro/nano-patterning.

Electromagnetic induction

Induction experiments Faraday's law. Lenz's law Motional electromotive force Induced electric fields Eddy currents Displacement currents and Maxwell's equations Inductance and magnetic field energy

Mutual inductance. Self-inductance and inductors. Magnetic field energy . The R-L, L-C and R-L-C series circuits

Superconductivity. Definitions. The Meissner effect. Levitation and other applications

Maxwell equations and electromagnetic waves.

Electricity, magnetism and light. Generating electromagnetic radiation. The electromagnetic spectrum.

Plane electromagnetic waves and the speed of light.

Sinusoidal electromagnetic waves.

Energy and momentum in electromagnetic waves.

Universitatea Tehnică din Cluj-Napoca • Facultatea de Electronică, Telecomunicații și Tehnologia Informației Str. George Barițiu nr. 26-28, 400027, Cluj-Napoca, Tel: 0264-401224, Tel/Fax: 0264-591689, http://www.etti.utcluj.ro

UNIVERSITATEA TEHNICÂ

UNIVERSITATEA TEHNICĂ DIN CLUJ-NAPOCA

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

Standing electromagnetic waves. Cavities.

Origins of quantum mechanics

Limitations of the classical physics and historical hypotheses Experiments with strange results within the classical theory: The black-body radiation, The photoelectric effect, Stability and emission spectra of atoms

Historical hypotheses: The Planck constant, The concept of corpuscular structure of the light, The emission spectra of atoms: the Bohr model

The wave-particle duality

The photon: wave or particle? The Young's double slit experiments and incompatibility with the classical approach. The influence of the measurement

The particles of matters are they waves? Introduction in relativity

The de Broglie hypothesis The Bohr model Applications. Diffraction with particles. Microscopy LASER with photons, LASER with electrons

The wave quantum mechanics

Representation of particles as wave packets. Wave function. Uncertainty on measurement. Wave equation for the particles

The Schrodinger equation. Stationary and time-dependent equation.

Basis of the wave QM

The postulates of the quantum mechanics. Stationary states, the time-independent Schrodinger equation. Average values. Particle flux. Continuity equation.

Direct applications of wave Quantum Mechanics

General formalism of solving a QM problem (Particle in a box. Potential well. Potential barriers and tunneling. Tunneling microscope.)

The quantum harmonic oscillator

Wave functions. Boundary conditions. Energy levels Comparing quantum and Newtonian oscillators.

Quantum mechanics as basis for atomic physics and solid state electronics

The hydrogen atom: basis of the atomic physics. Quantization of angular momentum Quantum numbers. Atomic structure. Periodic potential: energy bands, metals, insulators and semiconductors. Stern-Gerlach experiment and Uhlenbeck-Goudsmit postulate of electron spin.

The Schrodinger equation in three dimensions.: particle in 3D box. Periodic limit conditions. Electrons in solids.

Introduction in spintronics

Basic concepts. The electron spin and magnetic materials. Magnetorezistance effects: AMR, GMR, TMR Spin torque effects

Applications in sensors, data storage (MRAM, STT-RAM), high frequency oscillators (STT-HFO)

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

Bibliography

- 1) H. D. Young, R. A. Freedman Sears and Zemansky's University Physics with Modern Physics Technology Update (lb. engleza), Pearson 2013; in romanian: Fizica, EDP Bucuresti (1993).
- 2) D. Halliday, R. Resnik, Physics (vol. I, II), John Willey et sons in Romanian: Fizica, EDP Bucuresti (1975).
- 3) Berkeley Physics Course (5 vol), vol.I Mechanics (Ch. Kittel, W. Knight, M.A. Ruderman), McGRAW-HILL BOOK COMPANY. in Romanian: EDP Bucuresti, 1981-. Editura Tehnica, Bucuresti, (1984).
- 4) E. Luca, Gh. Zet si altii ii Fizică generală, Ed. Did. şi Pedag., Bucureşti.

On-line references

5) Tiusan Coriolan. *Elements of Physics* (course content, course an seminaries), https://spin.utcluj.ro/webphysics/Physics.html

8.2	Seminar / laboratory / project	Teaching methods	Notes
1)	Introduction. Labor protection. Coulomb forces, electric field intensity and electric potential.	nd team	uter
2) 3)	Applications of the Gauss law. Infinite wire Infinite plaque Spherical charge distributions.	cise, dual and	computer
4)	Applications of the Ampere law.	divice.	and
5)	Tailoring of magnetic properties by dimensionality. Micro/nano-patterning.	didactic exercise, alysis, individual	
6)	Photoelectric effect. Compton effect. De Broglie wave length of particles and applications.	proof, didactic exercise and analysis, individual	computers
7)	Potential well. Potential barriers and tunneling. Tunneling microscope. Spintronics and nanotechnologies.		ooard, sis.
Bik	liography	ent	ietic boa analysis
1)	H. D. Young, R. A. Freedman - Sears and Zemansky's University Physics with Modern Physics Technology Update (lb. engleza), Pearson - 2013;	d experimental n, observation	of white/magnetic board, grams for data analysis.
2) htt	On-line references Tiusan Coriolan. Elements of Physics (course content, course an seminaries), ps://spin.utcluj.ro/webphysics/Physics.html	Didactic and e conversation, work	Use of white programs fo

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The discipline content and the acquired skills are in agreement with the expectations of the professional Competences acquired will be used in the following COR occupations (Electronics Engineer; Telecommunications Engineer; Electronics Design Engineer; System and Computer Design Engineer; Communications Design Engineer) or in the new occupations proposed to be included in COR (Sale Support Engineer; Multimedia Applications Developer; Network Engineer; Communications Systems Test Engineer; Project Manager; Traffic Engineer; Communications Systems Consultant).

10. Evaluation

Activity type	10.1 Assassment critoria	10.2 Assessment	10.3 Weight in
Activity type	10.1 Assessment criteria	methods	the final grade

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

10.4 Course	and practical skills, logical coherence, skills of operating with acquired knowledge in individual complex activities.	Formative evaluation tests (sets of problems solving) -Summative evaluation written exam (theory and problems)	80%
10.5 Seminar/ Laboratory	The level of acquired theoretical knowledge and abilities for problems analysis and solving	Continuous formative evaluationseminary individual work	20%

10.6 Minimum standard of performance

Quality level:

Minimum knowledge:

- Knowledge of the basic principles of Electricity and Magnetism: phenomena in electrostatics and electrokinetics
- Knowledge of the phenomenological theory of charge transport, the physical origin of resistance and Joule effect, the classification of materials in metals, insulators, semiconductors.
- -Knowledge of main concepts related to the sources of Electric Field and Magnetic Field and the phenomenology of electrostatic and magnetic interactions.
- Knowledge for the basis of electromagnetic field: generation, propagation, energy transport, applications in communications technologies.
- -Knowledge of main concept of quantum physics, as basis of modern technologies: wave/particle duality, probabilistic approach of physical phenomena, applications of quantum mechanics in material science and electronic devices.

Minimum competences:

- Be able to calculate electric and magnetic fields generated by their respective sources (charge distributions, currents).
- Calculate electrostatic and magnetic interactions.
- Be able to explain the different properties for the different types of magnetic properties of materials: diamagnetic, ferromagnetic, paramagnetic.
- Be able to solve standard problems in Electricity, Magnetism, Electromagnetic waves, Elementary Quantum Physics.
- The exam and laboratory notes must be at least 5.
- The mark for the subject is calculated with the relation: 0.8 * Exam score + 0.2 * Worker grade (seminary contribution)

Date of filling in:	Responsible	Title Surname NAME	Signature
20.06.2023	Course	Prof. loan ARDELEAN, Ph.D	
	Applications	Assoc. Prof. Traian PETRISOR, Ph.D	

Date of approval in the Council of the Communications Department 11.07.2023	Head of Communications Department Prof. Virgil DOBROTA, Ph.D.
Date of approval in the Council of the Faculty of Electronics, Telecommunications and Information Technology 12.07.2023	Dean Prof. Ovidiu POP, Ph.D.

Facultatea de Electronică, Telecomunicații și Tehnologia Informației