

SYLLABUS

1. Data about the program of study

1.1 Institution	Technical University of Cluj-Napoca
	Faculty of Electronics, Telecommunications and information
1.2 Faculty	Technology
1.3 Department	Electrotechnics and measurements
1.4 Field of study	Electronic Engineering, Telecommunications and Information
1.4 Field Of Study	Technologies
1.5 Cycle of study	Bachelor of Science
1.6 Program of study / Qualification	Applied Electronics / Engineer
1.7 Form of education	Full time
1.8 Subject code	13.00 (https://etti.utcluj.ro/planuri-de-invatamant.html)

2. Data about the subject

2.1 Subject name	BASES	BASES OF ELECTROTECHNICS I				
	Theore	Theoretical area				
2.2 Subject area	Metho	Methodological area				
Analy			lytic area			
2.3 Course responsible			Assistant professor Denisa STET – Denisa.Stet@ethm.utcluj.ro			
2.4 Teacher in charge with seminar /			Accistant professor Donica STET Donica Stat@athm.utclui.ro			
laboratory / project			tant professor Denisa Sh	er – Demsa.stet@etimi.utciuj.ro		
2.5 Year of study	2.6 Semeste	2.6 Semester 2.7 Assessment 2.8 Subject category				

3. Estimated total time

3.1 Number of hours per week	4	of which:	3.2 course	2	3.3 seminar / laboratory	2
3.4 To Total hours in the curriculum	56	of which:	3.5 course	28	3.6 seminar / laboratory	28
Distribution of time						
Manual, lecture material and notes, b	oibliogr	aphy				40
Supplementary study in the library, online specialized platforms and in the field						-
Preparation for seminars / laboratories, homework, reports, portfolios and essays						28
Tutoring						3
Exams and tests						3
Other activities:					-	
3.7 Total hours of individual study 48						

3.8 Total hours per semester	104
3.9 Number of credit points	4

4. Pre-requisites (where appropriate)

4.1 curriculum	N/A
4.2 compotonco	Relations and theorems for electric circuits; analysis methods
4.2 competence	for electric circuits; transfer function

5. Requirements (where appropriate)

5.1. for the course	Existence of multimedia infrastructure
5.2. for the seminars / laboratories / projects	Existence of multimedia infrastructure

6. Specific competences

	Theoretical knowledge (what the student must know):	
	 This course should stimulate students' interest, for they often tend to view a 	
	course in EM as a dry experience, which does not go beyond mathematical	
	manipulations.	
	 The more logical presentation of the traditional approach can be made sufficier 	itly
	exciting to engineering students by relating the theory to real-world problems	
ses	which are covered in the application sections	
end	Acquired skills (what the student is able to do):	
pet	\checkmark To enable the student to solve various types of theoretical problems using metho	ds
μo	and theorems	
al o	 I o enable the student to analyse and study electronic circuits by means of quadrinoles 	
sior	\checkmark To convince students that their understanding of many areas, such as solid state	
fes	physical electronics microwaves etc. depends on EM	
Prc	In accordance with Grila1 and Grila2 RNCIS:	
	C1. To use the fundamental elements regarding electronic devices, circuits, system	s,
	instrumentation and technology;	
	C4. To design and use low complexity hardware and software applications, specific	to
	applied electronics;	
	C5. To apply knowledge, concepts and basic methods from power electronics,	
	automated systems, electric energy management, electromagnetic compatibility.	
SS		
ence		
oete		
lmo		
ss c		
Cro		
Ŭ		

7. Discipline objectives (as results from the key competences gained)

7.1 General objective	On successful completion of this course, students will be able to: analyze the operation of linear circuits in response to DC, sinusoidal, non-sinusoidal and transient waveforms.
7.2 Specific objectives	- To present systematically the basic theory of the electric circuits -To introduce electrical components and the fundamental laws that govern the behavior of an electrical circuit in case of: 1) DC and AC circuits; 2) two-ports networks; 3) steady-state periodic non-sinusoidal regime; 4) transient regime of linear circuits; 5) three-phase circuits; 5) transmission lines.

8. Contents

8.1 Lecture (syllabus)	Teaching methods	Notes
1. Introduction to the circuit theory. lines		
2. Direct current circuits (Kirchhoff theorems, ideal sources,		
node analysis, loop analysis, Thevenin and Norton equivalent		
generator)		
3. Linear electric circuits in the sinusoidal steady state.		
4. Symbolic representation of sinusoidal quantities, linear		The course will
complex electric circuits equations		be delivered in
5. Equivalent impedances		the form of
6. Power, conservation of complex power, energy transfer		presentations,
7. Resonance in electric circuits (series, parallel, real,		mathematical
inductively coupled circuits)	On-site lecture	domonstrations
8. Methods and theorems for the analysis of the a.c. circuits	(problematization,	on the
(elements of topology and graph theory, transfiguration	debate, case	blackboard
methods).	studies,	completed with
9. Two-port networks (the physical significance of the	evaluation)	multimedia
parameters, connections, equations, equivalent circuit		tools such as
diagrams)		graphics tablet
10. Three-phased electric circuits		and
11. Non-sinusoidal steady state		presentations
12. The transient regime of the linear electric circuits		in .ppt format
(continuity conditions, first order circuits, second order		
circuits).		
13. The transient regime of the linear electric circuits (Laplace		
transform, Fourier transform, state equations).		
14. Transmission lines		
Bibliography		
[1] Ch. K. Alexander, M.N.O. Sadiku, "Fundamentals of Electric C	ircuits", Eg. Mc Graw	Hill, 2012;
[2] R.C. Dorf, J.A. Svoboda, "Introduction in Electric Circuits", Ed.	. Johm Wiley & Sons, I	nc., 1996;
[3] RV Ciupa, V Topa, The Theory of Electric Circuits, Ed. Casa Car	til de Stiinta Publishin	g House, 2003;
[4] RV Ciupa, Bazele electrotehnicii. Teorie și aplicații. (vol.1-1	.57 pag., vol.2 -277 p	ag.), Ed.
Casa Cărții de Știință Cluj-Napoca.		
8.2 Seminar	Teaching methods	Notes
1. Methods of solving D.C. circuits (equivalent resistances,		
Kirchhoff's laws, Ohm's law, superposition theorem, the		
method of loop currents),		The seminars
2. Methods of solving D.C. circuits (the method of node-		will be delivered
voltages, maximum power transfer, Thevenin and Norton	On-site lecture	in the form of
equivalent network theorems)	(problematization	presentations
3. Mathematical operations with sinusoidal quantities.	debate case	discussions and
Representation of sinusoidal functions by vectors and complex	studies.	mathematical
number. The phase diagrams	evaluation)	demonstrations
4. Method of solving A.C. circuits using phase diagrams		on the
5. Method of solving A.C. circuits (equivalent impedances,		blackboard
Kirchhoff' s current and voltage laws)		SideNotard
6. Method of solving A.C. circuits (method of loop currents,		
method of node-voltage		

7. Method of solving A.C. circuits (Thevenin and Norton				
equivalent network theorems, the conservation of complex				
power)				
8. Resonance in electrical circuits				
9. Two – port networks – finding the ABCD, impedance and				
admittance parameters				
10. Two – port networks – equivalent T and Π networks, the				
interconnection of twoport networks				
11. Steady –state periodic non-sinusoidal regime – finding the				
coefficients of the Fourier series				
12. Network analysis in non-sinusoidal regime (resonance,				
power balance for nonsinusoidal periodic variables)				
13. Transmission lines (determination of primary and				
secondary line parameters, voltage and current waves on long				
lines)				
14. Review of the methods and theorems				
Bibliography				
[1] Ch. K. Alexander, M.N.O. Sadiku, "Fundamentals of Electric Circuits", Eg. Mc Graw Hill, 2012;				

[2] D. Micu, L. Darabant, D. Stet sa, "Teoria circuitelor electrice. Probleme, Ed. UTPress, 2016.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The discipline content and the acquired skills are in agreement with the expectations of the professional organizations and the employers in the field, where the students carry out the internship stages and/or occupy a job, and the expectations of the national organization for quality assurance (ARACIS).

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade			
10.4 Course	The level of acquired theoretical knowledge and practical skills	Even (enline (ensite)	40%			
10.5 Seminar The level of acquired knowledge and abilities		exam (online/onsite)	60%			
10.6 Minimum standard of performance: final grade ≥ 5						
To know the fundamental laws that govern the behavior of an electrical circuit in case of: 1) DC and AC circuits; 2) two-ports networks; 3) steady-state periodic non-sinusoidal regime; 4) transient regime of linear circuits; 5) three-phase circuits; 5) transmission lines.						

UNIVERSITATEA TEHNICĂ DIN CLUJ-NAPOCA

Facultatea de Electronică, Telecomunicatți și Tehnologia Informației

Date of filling in:	Responsible	Title Surname NAME		Signature		
11.07.2024	Course	As. Prof. Phd. Eng. Denisa	STET			
	Applications	As. Prof. Phd. Eng. Denisa	STET	- tota		
Date of approval in the Department of			Head of Department			
Date of approval in th	ne Council of Facult	cy of Electronics,	Dean Brof Ovidiu BOB BbD ong			
11.07.2024						