

SYLLABUS

1. Data about the program of study

1.1 Institution	Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Electronics, Telecommunications and information
1.2 Faculty	Technology
1.3 Department	Applied Electronics
1.4 Field of study	Electronic Engineering, Telecommunications and Information
1.4 Field Of Study	Technologies
1.5 Cycle of study	Bachelor of Science
1.6 Program of study / Qualification	Telecommunications Technologies and Systems/ Engineer
1.0 Program of study / Qualification	Applied Electronics/Engineer
1.7 Form of education	Full time
1.8 Subject code	TST-E18.00/EA-E18.00

2. Data about the subject

2.1 Subject name		Materi	Materials for Electronics					
		eoretical area						
		1ethodological area						
Analyt			lytic area					
2.3 Course responsible			Assoc. Prof. Cristian Farcas, Ph.D cristian.farcas@ael.utcluj.ro					
2.4 Teacher in charge with seminar / laboratory / project							0. – <u>cristian.farcas@ael.ut</u> - <u>ionut.ciocan@ael.utcluj.r</u>	
2.5 Year of study	II	2.6 Semeste	er	1	2.7 Assessment	Ε	2.8 Subject category	DD/DI

3. Estimated total time

3.1 Number of hours per week	3	of which: 3.2 course	2	3.3 seminar / laboratory	1
3.4 To Total hours in the curriculum	42	of which: 3.5 course	28	3.6 seminar / laboratory	14
Distribution of time					
Manual, lecture material and notes, b	ibliogr	aphy			24
Supplementary study in the library, online specialized platforms and in the field					12
Preparation for seminars / laboratories, homework, reports, portfolios and essays					14
Tutoring					
Exams and tests					
Other activities:					
3.7 Total hours of individual study 58					
3.8 Total hours per semester 100					

4. Pre-requisites (where appropriate)

3.9 Number of credit points

4.1 curriculum	-
4.2 competence	Relations and theorems for electric circuits; physics; chemistry;

4

5. Requirements (where appropriate)

5.1. for the course	Amphitheatre, Cluj-Napoca
5.2. for the seminars / laboratories / projects	Laboratory, Cluj-Napoca

6. Specific competences

Professional competences	 C1. Use of the fundamental elements related to devices, circuits, systems, instrumentation and electronic technology C4. Design, implementation and operation of data, voice, video and multimedia services. This is based on the understanding and the application of fundamental concepts in telecommunications and transmission of information C5. Selecting, installing, configuring and operating fixed or mobile telecommunications equipment. Equipping a site with usual telecommunications networks C6. Solving specific problems of the broadband communications networks: propagation in different environment, circuits and equipment for high frequencies (microwaves and optical).
Transversal competences	N/A

7. Discipline objectives (as results from the key competences gained)

7.1 General objective	Development of competences in the field of materials used in electronics.		
7.2 Specific objectives	 Assimilation of theoretical knowledge regarding the materials used in electronics. Acquiring skills for the use of laboratory equipment. 		

8. Contents

8.1 Lec	ture (syllabus)	Teaching methods	Notes
1.	Course description. An overview of electronic materials.		
2.	Matter structure and bonding	em	ard
3.	Electronic band theory of solids	problem tudy,	pog
4.	Classification of materials - conductors, insulators, semiconductors	cation, prob case study	.ppt presentation, projector, blackboard
5.	Dielectric materials – definitions, classifications and general aspects		jector
6.	Fundamental properties of dielectrics	entation exemplii exercise	pro
7.	Applications of dielectrics	ů – M	on,
8.	Breakdown of dielectrics. Dielectric materials used in electronics.	Pre rsation, aching ation	sentati
9.	Semiconductor materials – definitions, classifications and general aspects	istic conver entation, te ative evalua	pt pres
10.	Intrinsic semiconductors	tic c ive	-
11.	Extrinsic semiconductors	euristic esenta rmative	e of
12.	PN junction. Some semiconductors used in electronics.	heuri prese	Use

Universitatea Tehnică din Cluj-Napoca • Facultatea de Electronică, Telecomunicații și Tehnologia Informației Str. George Barițiu nr. 26-28, 400027, Cluj-Napoca, Tel: 0264-401224, Tel/Fax: 0264-591689, http://www.etti.utcluj.ro

13. Conductors

14. Magnetic materials. Preparation for the final exam.

Bibliography

- 1. C. Farcas Cristian Materiale pentru electronica, Ed. Risoprint, Cluj-Napoca, 2009
- 2. R. Cret Materiale pentru electronica, U.T. Press, Cluj-Napoca, 2004
- 3. D. Pitica, M. Radu Componente electronice pasive, Litografia UTC-N, 1994
- 4. D. Schroder Semiconductor Material and Device Characterization, John Wiley & Sons, 2006
- 5. Yu P., Cardona M. Fundamentals of Semiconductors. Physics and Materials Properties, Springer, 2010.

8.2 Laboratory	Teaching methods	Notes		
1. Introduction. Labour protection	f, am	s, ırd		
2. Electrical conductor materials	të o	ory ard soa		
3. Ferromagnetic materials	l pr	bo bo		
4. Solid dielectric materials	ork arti	abo ent ital		
5. P-N junction barrier capacitance	exe me	of la um ner		
6. Temperature dependence of resistivity (conductors and	Dic Dic	se o istru erin e/ m		
semiconductors)	lac st	, n d i		
7. Lab recovery and finalization of laboratory activity	dic	é) M		
Bibliography				

- 1. V. Pop, I. Chicinas, N. Jumate Fizica materialelor. Metode experimentale, Presa Universitara Cluieana. 2001
- 2. R.S. Popovic, Hall Effect Devices 2nd ed., Bristol; Philadelphia: Institute of Physics, 2004.
- 3. B. Zeghbroeck, Principles of Semiconductor Devices and Heterojunctions, Paperback 2008.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The discipline content and the acquired skills are in agreement with the expectations of the professional Competences acquired will be used in the following COR occupations (Electronics Engineer; Telecommunications Engineer; Electronics Design Engineer; System and Computer Design Engineer; Communications Design Engineer) or in the new occupations proposed to be included in COR (Sale Support Engineer; Multimedia Applications Developer; Network Engineer; Communications Systems Test Engineer; Project Manager; Traffic Engineer; Communications Systems Consultant).

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade
10.4 Course	The level of acquired theoretical knowledge and practical skills	Summative evaluation written exam (theory and problems)	80%
10.5 Seminar/ Laboratory	The level of acquired knowledge and abilities	 Continuous formative evaluation practical lab test 	20%

10.6 Minimum standard of performance

Quality level:

Minimal knowledge:

- \checkmark Knowledge of the main properties of conductive, semiconductor, insulating and magnetic materials.
- ✓ Knowledge of the main materials used in electronics.

Minimal competences:

To be able to list the main properties of materials used in electronics.

✓ To be able to specify the main advantages and disadvantages of the materials used in electronics.

Quantitative level:

- ✓ To perform all laboratory works
- ✓ The exam and laboratory marks must be at least 5
- ✓ The final mark for the subject is calculated with the relation: 0.8 * Exam mark + 0.2 * Lab mark

Data of filling in:	Responsible	Title First name SURNAME	Signature
20.06.2023	Course Applications	Assoc. Prof. Cristian Farcas, Ph.D.	
		Assoc. Prof. Cristian Farcas, Ph.D.	
		Assist. Prof. Ionut Ciocan, Ph.D.	

Date of approval in the Council of the Communications Department 11.07.2023	Head of Communications Department Prof. Virgil DOBROTA, Ph.D.
Date of approval in the Council of the Faculty of Electronics, Telecommunications and Information Technology 12.07.2023	Dean Prof. Ovidiu POP, Ph.D.