

SYLLABUS

1. Data about the program of study

1.1 Institution	Technical University of Cluj-Napoca
1.2 Faculty	Faculty of Electronics, Telecommunications and information Technology
1.3 Department	Electrical Engineering and Measurements
1.4 Field of study	Electronic Engineering, Telecommunications and Information Technologies
1.5 Cycle of study	Bachelor of Science
1.6 Program of study / Qualification	Applied Electronics / Engineer; Telecommunications Technologies and Systems / Engineer
1.7 Form of education	Full time
1.8 Subject code	23.00

2. Data about the subject

2.1 Subject name		Electro	Electronic and Telecommunications Measurements					
2.2 Subject area Met		Theor	Theoretical area					
		Metho	Methodological area					
Analy			alytic area					
2.3 Course responsible Assoc. Prof. Holonec Rodica – <u>rodica.holonec@ethm.ut</u>				ica.holonec@ethm.utcluj	.ro			
2.4 Teacher in charge with seminar / Assoc. Prof. Holonec Rodica – rodica.holonec@ethm.utcluj.ro				.ro				
laboratory / project Assist. Rapolti Laszlo – <u>Laszlo.Rapolti@ethm.utcluj.ro</u>								
2.5 Year of study	Π	2.6 Semeste	er	2	2.7 Assessment	Ε	2.8 Subject category	DID/DI

3. Estimated total time

3.1 Number of hours per week	4	of which: 3.2 course	2	3.3 seminar / laboratory	2
3.4 To Total hours in the curriculum	56	of which: 3.5 course	28	3.6 seminar / laboratory	28
Distribution of time					hours
Manual, lecture material and notes, bibliography					
Supplementary study in the library, online specialized platforms and in the field					
Preparation for seminars / laboratories, homework, reports, portfolios and essays					
Tutoring					
Exams and tests					
Other activities:					0
3.7 Total hours of individual study	44				
3.8 Total hours per semester	100				

4. Pre-requisites (where appropriate)

3.9 Number of credit points

4.1 Curriculum	Required: Electronic Devices, Electrical Circuits Theory Recommended: Fundamental Electronic Circuits, Basics of Electrotechnics
4.2 Competence	Elementary electrical circuit theory, Elementary electronics,

4

5. Requirements (where appropriate)

5.1. For the course	Whiteboard (blackboard), computer, projector and sound system
5.2. For the seminars / laboratories / projects	Laboratory classroom equipped with specific measuring devices, PCs and specific software.

6. Specific competences

	C1. To use the fundamental elements regarding electronic devices, circuits, systems,
	instrumentation and technology
	C1.1 To describe the functioning of electronic devices and circuits and of the fundamental
	methods for measuring electrical quantities
	C1.4 To use the electronic devices and specific methods to characterize and evaluate the
	performance of electronic circuits and systems
	C2. To apply basic methods for signal acquisition and processing
S	C2.2 To explain interpret the methods for signal acquisition and processing
nce	C2.4 To use specific methods and instruments for signal analysis
ete	C3. To apply knowledge, concepts and basic methods regarding computing systems'
) du	architecture, microprocessors, microcontrollers, programming languages and techniques
SC	C4. To design and use low complexity hardware and software applications, specific to
la	applied electronics
sior	C4.1 To define the concepts, principles and methods used in the fields of computer
fess	programming, high-level and specific languages, CAD techniques for making electronic
Lo.	modules, microcontrollers, computer systems architecture, programmable electronic
	systems, graphics, reconfigurable hardware architectures
	Specific professional competences:
	1. To use the fundamental concepts related to the modern measurement science and uncertainty
	theory.
	2. To have knowledge about basic principles of the electrical, electronic and telecommunication
	measuring instruments and their correct management.
	3. To apply knowledge regarding measurement methods of the main electrical quantities.
	4. To use and design modern measurement systems based on PC-based data acquisition.
es	N/A
enc	
pet	
Б	
ss c	
CC	
)	

7. Discipline objectives (as results from the key competences gained)

7.1 General objective	Developing the competences regarding the important topics in the field of electronic and telecommunications measurements
7.2 Specific objectives	Theoretical and practical competences related to the: Fundamental measurement theory, electronic measurement techniques, analog and digital measuring devices, computer based measuring systems, virtual instrumentation

8.	Contents		
	8.1 Lecture (syllabus)	Teaching methods	Notes
	Fundamentals of Metrology. Measurement Units. Measurements Standards. Traceability. Measurement Terminology. Errors and Uncertainties. Measuring Instruments Specifications		
e	Digital measurement of frequency and time. Direct digital measurement of frequency and time period. Digital measurement of the ratio of two frequencies. Multiperiod mode Digital measurement of phase shift angles. Totalization mode. Timer function.		
	Digital voltmeters, analog-digital conversion circuits, resolution, precision. Average, peak, RMS detector voltmeters.		
	Digital multimeters, measuring alternating voltages, currents, resistances, capacities and inductances, the current transfer factor for transistors, diode testing	Oral Presentation,	
	Direct current bridges. Balanced and Unbalanced Wheatstone Bridge.	heuristic conversation, exemplification, problem presentation, teaching exercise, case study.	Projector, whiteboard (blackboard)
	Measurement of very small and very large resistances.	formative evaluation, Quiz online,	
	AC Bridges. Q-meter		
	Digital impedance meters, RLC measurement, quality factor, losses		
	Real-time cathode oscilloscope. X-axis circuits. Generation of time base signals. Trigger and synchronization circuit. Synchronization sources.		
	Real-time cathode oscilloscope. The y-axis circuits. Frequency compensated attenuator. The frequency response of the deflection amplifier. Multi-channel mode of operation.		
	Digital oscilloscopes. Sequential and random sampling. Sampling rate, frequency band. Vertical and horizontal resolution.		
	Applications of the oscilloscope in X-Y mode: the Curve Tracer, the Wobbulator		

Digital power measurement. Signal generators						
 Bibliography [1]. Holonec Rodica: Electrical Measurements and Instrumentation, Mediamira, 2003 [2]. Nihal Kularatna, Digital and Analogue Instrumentation testing and measurement: The Institution of Engineering and Technology, London, United Kingdom, 2008 [3]. Robert B. Northrop Introduction to Instrumentation and Measurements, 3rd Edition, CRC Press, 2017 [4]. Robert A. Witte-Spectrum and Network Measurements-SciTech Publishing, 2014 [5]. Tarnovan Ioan: Metrologie electrică si instrumentație, Mediamira, 2003 [6]. Todoran Gh., Copandean R.: Masurari electronice-Amplificatore si convertoare de măsurare, Mediamira, 2003 						
8.2 Laboratory	Teaching methods	Notes				
Digital measurement of time and frequency Digital multimeter. Measurements of voltages, currents, resistances, attenuation or amplification in dB. Testing diodes, bipolar transistors. Measuring bridges. The impedance meter Use of analog measuring devices. Extending the measurement domains. Q-meter measurement methods. The analog oscilloscope: synchronization of periodic signals, measurement of peak and effective values, determination of the frequency band, input impedance Digital oscilloscope: phase shift measurements, synchronization for aperiodic signals, synchronization for modulated signals	Didactic and experimental proof, didactic exercise, team work	Experimental circuits, Hardware and software for data acquisition				
8.3 Seminar	Teaching methods	Notes				
Representation and writing rules. Measurement errors. Instrumental errors. Measurement units. Measurement uncertainties. Confidence levels. Histogram. Normal distribution. Eliminating outliers. Errors when measuring voltage and current. Calculation methods for real values. Current measurement without voltage drop. Strain gauges bridge. Principles of implementation. The resistor with 4 and 3 terminals. Alternating current bridges: Maxwell –Wien, Sauty	Solving of problems and review of some theoretical aspects.	Projector, whiteboard (blackboard)				

Bibliography

- [1]. Holonec Rodica: Electrical Measurements and Instrumentation, Mediamira, 2003
- [2]. Rodica Holonec, B. Tebrean, I.G. Tarnovan, Gh. Todoran, Electronic Measurements: Laboratory Manual, Editura U.T. PRESS, Cluj-Napoca 2010, ISBN.978-973-662-600
- [3]. Rodica Holonec, Radu Adrian Munteanu, Romul Copîndean, Florin Drăgan, Instrumentație virtuală: lucrări de laborator, UT Press, 2018 Cluj-Napoca
- [4]. Mircea Dan Iudean, Radu Munteanu jr., Mircea Buzdugan, Eudor Flueras, Alex Cretu, Măsurări electrice şi electronice : îndrumător de laborator, Editura Mediamira, Cluj-Napoca, 2016, ISBN 978-973-713-338-0

8.1 Laboratory	Teaching methods	Notes	
Analog Measurement Devices.			
Digital Measurement Devices			
The Extension of the Measurement Range of Analog Instruments			
Wheatstone Bridge	Didactic and experimental	Experimental circuits,	
Digital Oscilloscope. Basics and Measuring Principles	proof, didactic exercise, teamwork	Hardware and software for data acquisition	
Virtual Instrumentation: LabVIEW – Basic operations and structures			
Data Acquisition Systems. Measuring Analog and Digital Signals.			
8.3 Seminar	Teaching methods	Notes	
Measurement Fundamentals. Measurement Units. Significant Figures Meter Loading - Voltage Measurement			
Measurement Uncertainty Computation. Direct and Indirect Measurements.			
Random Errors Analysis. Repeated Measurements. Statistical Parameters	Solving of problems and review of some theoretical	Projector, whiteboard (blackboard)	
Parameters of Periodic Signals. AC Voltmeters	aspects.		
Measurements using Bridges. DC Bridges. AC Bridges			
The Oscilloscope. Basics. Measuring Principles			
Phase Measurement. Case study: The Gilbert Cell.			

Bibliography

- [1]. Holonec Rodica: Electrical Measurements and Instrumentation, Mediamira, 2003
- [2]. Rodica Holonec, B. Tebrean, I.G. Tarnovan, Gh. Todoran, Electronic Measurements: Laboratory Manual, Editura U.T. PRESS, Cluj-Napoca 2010, ISBN.978-973-662-600
- [3]. Munteanu,R.,Todoran,Gh. Teoria si practica prelucrarii datelor de masurare.Editura Mediamira 1997.Cluj Napoca. 350p ISBN 973-9358-09-8.
- [4]. TARNOVAN, Ioan Gavril, Metrologie electrica si instrumentatie, Cluj-Napoca : Mediamira, 2003
- [5]. Vlaicu C. Sisteme de măsurare informatizate, Editura ICPE, București, 2000

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The discipline content and the acquired skills are in agreement with the expectations of the professional organizations and the employers in the field of electronic and telecommunications measurements, where the students carry out the internship stages and/or occupy a job, and the expectations of the national organization for quality assurance (ARACIS).

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade
10.4 Course	The level of acquired theoretical knowledge and practical skills	Written examination	80%
10.5 Seminar/ Laboratory	The level of acquired knowledge and abilities at seminar (S) and laboratory (L)	Continuous assessment	10%(S)+10%(L)= 20%

10.6 Minimum standard of performance

Qualitative level:

Minimal knowledge:

- ✓ Knowledge about the basic electronic and telecommunications measurement principles, methods and devices.
- ✓ Knowledge about acquiring, recording and analyzing the measurement data Minimal competences:
 - \checkmark To be able to explain basic concepts and definitions in measurement.
 - \checkmark To be able to describe the main measuring methods.
 - \checkmark To be able to describe the principle of analog and digital measuring instruments.
 - \checkmark To be able to record, process and analyze experimental measurement data.
 - ✓ To be able to operate/design a simple measurement system.

Quantitative level:

- ✓ Conditions for participating in the final exam: no absence at laboratory work.
- ✓ The final grade computation: $G=0,8^*$ (written examination grade) +0,1*(L grade) +0,1*(S grade).
- ✓ Condition to take the credits: G≥5;

Date of filling in: 27.06.2024	Responsible	Title Surname NAME	Signature
	Course	Assoc. Prof. Holonec Rodica	RSy

UNIVERSITATEA TEHNICĂ DIN CLUJ-NAPOCA

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

Applications	Assoc. Prof. Holonec Rodica	Rdy
	Assist. Rapolti Laszlo	Arc

Date of approval in the Department of Electrical Engineering and Measurements	Director Department Prof.dr.ing. Sorin HINTEA
	<u> </u>
_1.07.2024	
Data of approval in the Council of Faculty of Flortropics	Doop
Telecommunications and Information Technology	Prof.dr.ing. Ovidiu POP
6,	U U
11.07.2024	