

SYLLABUS

1. Data about the program of study

Technical University of Cluj-Napoca
Faculty of Electronics, Telecommunications and information
Technology
Bases of Electronics
Electronic Engineering, Telecommunications and Information
Technologies
Bachelor of Science
Telecommunications Technologies and Systems/ Engineer
Applied Electronics/Engineer
Full time
TST-E32.00/EA-E32.00

2. Data about the subject

2.1 Subject name		C	ptoelect	ronio	cs			
		Theoretical area						
		Methodological area						
Analytic area								
2.3 Course responsible Prof. Ramona GALATUS, Ph.D – <u>Ramona.Galatus@bel.utcluj.ro</u>								
2.4 Teacher in charge	eacher in charge with Assoc. Prof. Lorant Andras SZOLGA, Ph.D. – Lorant.Szolga@bel.ut			utcluj.ro				
laboratory								
2.5 Year of study	Ш	2.6 Ser	nester	5	2.7 Assessment	Е	2.8 Subject category	DD/DI

3. Estimated total time

3.1 Number of hours per week	4	of which: 3.2 course	2	3.3 seminar / laboratory	2
3.4 To Total hours in the curriculum	56	of which: 3.5 course	28	3.6 seminar / laboratory	28
Distribution of time					
Manual, lecture material and notes, bibliography					28
Supplementary study in the library, online specialized platforms and in the field					5
Preparation for seminars / laboratories, homework, reports, portfolios and essays					28
Tutoring					3
Exams and tests					5
Other activities:					0
3.7 Total hours of individual study		69			

3.8 Total hours per semester	
5.6 Total flours per semester	125
3.9 Number of credit points	5

4. Pre-requisites (where appropriate)

4.1 curriculum	Analog integrated circuits, Digital integrated circuits
4.2 competence	N/A

5. Requirements (where appropriate)

5.1. for the course	
5.2. for the seminars / laboratories / projects	

6. Specific competences

Professional competences	 C1. Use of the fundamental elements related to devices, circuits, systems, instrumentation and electronic technology C4. Design, implementation and operation of data, voice, video and multimedia services. This is based on the understanding and the application of fundamental concepts in telecommunications and transmission of information C5. Selecting, installing, configuring and operating fixed or mobile telecommunications equipment. Equipping a site with usual telecommunications networks
Transversal competences	N/A

7. Discipline objectives (as results from the key competences gained)

7.1 General objective	Knowing some optoelectronic components and systems commonly encountered in practice.
7.2 Specific objectives	 Training to simulate optoelectronic circuits with specific software (OptiWave, Liekki Application Designer). Students must be able to specify/ choose optoelectronic devices suitable for the applications and to be able to design them. Training students to the level at which they can build simple optoelectronic equipment and they can measure / test optoelectronic systems.

8. Contents

8.1 Lecture (syllabus)	Teaching methods	Notes	
1.Introduction. Notions of optics.			
2.Mirrors.			
3.Lenses.			
4.Systems with lenses.			
5.Interference and Diffraction of light.			
6.Photometry, radiometry and colorimetry.			
7.Light emitting diodes (LED).		Video projector	
8.Lasers. Semiconductor lasers (LD).	Presentation, discussions	Video-projector White board	
9.Optical guides. Fiber optics.		white board	
10.Optical detectors: photocells.			
11.Optical detectors: photodiodes and			
phototransistors.			
12.Solar cells.			
13.Circuits with optoelectronic devices.			
14.Optical sensors.			

Universitatea Tehnică din Cluj-Napoca • Facultatea de Electronică, Telecomunicații și Tehnologia Informației Str. George Barițiu nr. 26-28, 400027, Cluj-Napoca, Tel: 0264-401224, Tel/Fax: 0264-591689, http://www.etti.utcluj.ro

Bibliography 1. Edited by Robert G. W. Brown and John P Dakin - Handbook of Optoelectronics - Taylor & Francis, 2006, Print ISBN: 978-0-7503-0646-1, eBook ISBN: 978-1-4822-6066-3 2. Emil Voiculescu, Tiberiu Marita - "Optoelectronică", Editura Microinformatica (Albastra), 2001, ISBN 973-9443-96-6. 3. Safa O Kasap - Optoelectronics Devices and Photonics: Principles and Practices. Prentice Hall ISBN 0-201-61087-6, Kasap Book Images. 2. Raymond Serway, John Jewett : Physics for Scientists and Engineers, 2003, ISBN-10: 0534408427 3. Stefan Nilsson-Gistvik - Optical Fiber Theory for Communication Networks, EN/LZT 199210/R1, Ericsson 2002. 4. Harry J R Dutton - Understanding Optical Communications, IBM http://www.redbooks.ibm.com. 5. Catalog Thorlabs, vol 21. Titlu : V21 Catalog web 6. http://www.thorlabs.com/images/Catalog/V21/V21 Catalog web.pdf 8.2 Laboratory **Teaching methods** Notes Introduction – labour protection laws and 1. lab equipment presentation. 2. Reflection and refraction of light: optical transmission on POF. 3. Lenses and telescopes. 4. Polarization of light. Semiconductor laser diodes. 5. Light as wave: interference. Light as wave: diffraction, interference. 6. 7. Light as wave: the colours from the white Computer, advanced light. simulation software, 8. LEDs – Light emitting diodes experimental laboratory Presentation, applications Voltage and current response of the 9 assemblies, specific photodiode and phototransistor to various measuring equipment IR light. 10. The photo-resistance response to various wavelengths. 11. Measuring the characteristic of directivity for photosensitive devices. 12. The optical fiber. Application: fiber optic splicing. 13. LED drivers. Linear drivers and switch-mode to strobe the displays. Bargraph displays. 14. Review. Assessing students. Bibliography 1. Lorant Szolga, Ramona Galatus, Emil Voiculescu - Optoelectronics – Laboratory Guide, UTPRESS, Cluj-Napoca, România, 2013, ISBN 978-973-662-858-0, p.113

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The discipline content and the acquired skills are in agreement with the expectations of the professional Competences acquired will be used in the following COR occupations (Electronics Engineer; Telecommunications Engineer; Electronics Design Engineer; System and Computer Design Engineer; Communications Design Engineer) or in the new occupations proposed to be included in COR (Sale Support Engineer; Multimedia Applications Developer; Network Engineer; Communications Systems Test Engineer; Project Manager; Traffic Engineer; Communications Systems Consultant).

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade
10.4 Course	The level of acquired theoretical knowledge and practical skills	Written test	90%
10.5 Seminar/ Laboratory	The level of acquired knowledge and abilities	Verification during semester through laboratory tests	10%
10.6 Minimum st	andard of performance		

Qualitative point of view

Minimal theoretical and practical knowledge:

✓ Knowledge of the main optoelectronic devices and their mode of operation.

Minimal acquired competences:

✓ Ability to identify an optoelectronic device and to understand its parameters in a manufacturer's catalog

Quantitative point of view

- ✓ Perform all laboratory work
- ✓ Exam and laboratory marks at least 4.5.
- ✓ The mark for the discipline is calculated with the relation: 0.9 * Exam score + 0.1 * Laboratory work

Data of filling in:	Responsible	Title First name SURNAME	Signature
20.06.2023	Course	Prof. Ramona GALATUS, Ph.D.	
	Applications	Assoc. Prof. Lorant Andras SZOLGA, Ph.D.	

Date of approval in the Council of the Communications Department 11.07.2023 Head of Communications Department Prof. Virgil DOBROTA, Ph.D.

Date of approval in the Council of the Faculty of Electronics, Telecommunications and Information Technology 12.07.2023 Dean Prof. Ovidiu POP, Ph.D.